These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 36002976)

  • 41. Role of microRNAs in biotic and abiotic stress responses in crop plants.
    Kumar R
    Appl Biochem Biotechnol; 2014 Sep; 174(1):93-115. PubMed ID: 24869742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of epigenetic and epitranscriptomic modifications in plants exposed to non-essential metals.
    Chmielowska-Bąk J; Searle IR; Wakai TN; Arasimowicz-Jelonek M
    Front Plant Sci; 2023; 14():1278185. PubMed ID: 38111878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epigenetic Modifications of mRNA and DNA in Plants.
    Liang Z; Riaz A; Chachar S; Ding Y; Du H; Gu X
    Mol Plant; 2020 Jan; 13(1):14-30. PubMed ID: 31863849
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function.
    Sornaraj P; Luang S; Lopato S; Hrmova M
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt A):46-56. PubMed ID: 26493723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses.
    Chen C; Chen X; Han J; Lu W; Ren Z
    BMC Plant Biol; 2020 Sep; 20(1):443. PubMed ID: 32977756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dynamic reversible RNA N
    Bi Z; Liu Y; Zhao Y; Yao Y; Wu R; Liu Q; Wang Y; Wang X
    J Cell Physiol; 2019 Jun; 234(6):7948-7956. PubMed ID: 30644095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Histone modifications in transcriptional activation during plant development.
    Berr A; Shafiq S; Shen WH
    Biochim Biophys Acta; 2011 Oct; 1809(10):567-76. PubMed ID: 21777708
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Principles of mRNA targeting via the
    Arribas-Hernández L; Rennie S; Köster T; Porcelli C; Lewinski M; Staiger D; Andersson R; Brodersen P
    Elife; 2021 Sep; 10():. PubMed ID: 34591015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Arabidopsis epitranscriptome.
    Fray RG; Simpson GG
    Curr Opin Plant Biol; 2015 Oct; 27():17-21. PubMed ID: 26048078
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering Crops for the Future: A Phosphoproteomics Approach.
    Kumar V; Khare T; Sharma M; Wani SH
    Curr Protein Pept Sci; 2018 Feb; 19(4):413-426. PubMed ID: 28190387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Understanding SUMO-mediated adaptive responses in plants to improve crop productivity.
    Clark L; Sue-Ob K; Mukkawar V; Jones AR; Sadanandom A
    Essays Biochem; 2022 Aug; 66(2):155-168. PubMed ID: 35920279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-Wide Identification of m
    Sun X; Wu W; Yang Y; Wilson I; Shao F; Qiu D
    Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement.
    Agarwal G; Kudapa H; Ramalingam A; Choudhary D; Sinha P; Garg V; Singh VK; Patil GB; Pandey MK; Nguyen HT; Guo B; Sunkar R; Niederhuth CE; Varshney RK
    Funct Integr Genomics; 2020 Nov; 20(6):739-761. PubMed ID: 33089419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA Modifications and Epigenetics in Modulation of Lung Cancer and Pulmonary Diseases.
    Teng PC; Liang Y; Yarmishyn AA; Hsiao YJ; Lin TY; Lin TW; Teng YC; Yang YP; Wang ML; Chien CS; Luo YH; Chen YM; Hsu PK; Chiou SH; Chien Y
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. N
    Rudy E; Grabsztunowicz M; Arasimowicz-Jelonek M; Tanwar UK; Maciorowska J; Sobieszczuk-Nowicka E
    Front Plant Sci; 2022; 13():1064131. PubMed ID: 36684776
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-Wide Investigation of N6-Methyladenosine Regulatory Genes and Their Roles in Tea (
    Zhu C; Zhang S; Zhou C; Xie S; Chen G; Tian C; Xu K; Lin Y; Lai Z; Guo Y
    Front Plant Sci; 2021; 12():702303. PubMed ID: 34211493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interplays of different types of epitranscriptomic mRNA modifications.
    Rengaraj P; Obrdlík A; Vukić D; Varadarajan NM; Keegan LP; Vaňáčová Š; O'Connell MA
    RNA Biol; 2021 Oct; 18(sup1):19-30. PubMed ID: 34424827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shaping the Bacterial Epitranscriptome-5'-Terminal and Internal RNA Modifications.
    Schauerte M; Pozhydaieva N; Höfer K
    Adv Biol (Weinh); 2021 Aug; 5(8):e2100834. PubMed ID: 34121369
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant proteomic research for improvement of food crops under stresses: a review.
    Mustafa G; Komatsu S
    Mol Omics; 2021 Dec; 17(6):860-880. PubMed ID: 34870299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.