These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 36003042)

  • 1. Chiral fiber supramolecular hydrogels for tissue engineering.
    Wang X; Feng C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Mar; 15(2):e1847. PubMed ID: 36003042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Hydrogels with Tunable Chirality for Promising Biomedical Applications.
    Dou X; Mehwish N; Zhao C; Liu J; Xing C; Feng C
    Acc Chem Res; 2020 Apr; 53(4):852-862. PubMed ID: 32216333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realizing tissue integration with supramolecular hydrogels.
    Feliciano AJ; van Blitterswijk C; Moroni L; Baker MB
    Acta Biomater; 2021 Apr; 124():1-14. PubMed ID: 33508507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Healing Supramolecular Hydrogels for Tissue Engineering Applications.
    Saunders L; Ma PX
    Macromol Biosci; 2019 Jan; 19(1):e1800313. PubMed ID: 30565872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Hydrogels for Modulation of Material-Cell Interactions.
    Vieira S; Silva-Correia J; Reis RL; Oliveira JM
    Macromol Biosci; 2022 Oct; 22(10):e2200091. PubMed ID: 35853666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double network hydrogel for tissue engineering.
    Gu Z; Huang K; Luo Y; Zhang L; Kuang T; Chen Z; Liao G
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1520. PubMed ID: 29664220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications.
    Hao Z; Li H; Wang Y; Hu Y; Chen T; Zhang S; Guo X; Cai L; Li J
    Adv Sci (Weinh); 2022 Apr; 9(11):e2103820. PubMed ID: 35128831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-responsive biphenyl-tripeptide supramolecular hydrogels as biomimetic extracellular matrix scaffolds for cartilage tissue engineering.
    Li X; Bian S; Zhao M; Han X; Liang J; Wang K; Jiang Q; Sun Y; Fan Y; Zhang X
    Acta Biomater; 2021 Sep; 131():128-137. PubMed ID: 34245894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural-Based Hydrogels for Tissue Engineering Applications.
    Gomez-Florit M; Pardo A; Domingues RMA; Graça AL; Babo PS; Reis RL; Gomes ME
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Hydrogels Based on DNA Self-Assembly.
    Shao Y; Jia H; Cao T; Liu D
    Acc Chem Res; 2017 Apr; 50(4):659-668. PubMed ID: 28299927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From infection to healing: The use of plant viruses in bioactive hydrogels.
    Dickmeis C; Kauth L; Commandeur U
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Jan; 13(1):e1662. PubMed ID: 32677315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications.
    Zhao Y; Song S; Ren X; Zhang J; Lin Q; Zhao Y
    Chem Rev; 2022 Mar; 122(6):5604-5640. PubMed ID: 35023737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral nanomaterials in tissue engineering.
    Yang Z; Jaiswal A; Yin Q; Lin X; Liu L; Li J; Liu X; Xu Z; Li JJ; Yong KT
    Nanoscale; 2024 Mar; 16(10):5014-5041. PubMed ID: 38323627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.