BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 36003265)

  • 21. Comparing thermal performance curves across traits: how consistent are they?
    Kellermann V; Chown SL; Schou MF; Aitkenhead I; Janion-Scheepers C; Clemson A; Scott MT; Sgrò CM
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, Gryllus firmus: Implications for life-history evolution.
    Zera AJ; Vellichirammal NN; Brisson JA
    J Insect Physiol; 2018; 107():233-243. PubMed ID: 29656101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feeding-State-Dependent Modulation of Temperature Preference Requires Insulin Signaling in Drosophila Warm-Sensing Neurons.
    Umezaki Y; Hayley SE; Chu ML; Seo HW; Shah P; Hamada FN
    Curr Biol; 2018 Mar; 28(5):779-787.e3. PubMed ID: 29478858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoregulatory Behavior Simultaneously Promotes and Forestalls Evolution in a Tropical Lizard.
    Muñoz MM; Losos JB
    Am Nat; 2018 Jan; 191(1):E15-E26. PubMed ID: 29244559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural selection on thermal preference, critical thermal maxima and locomotor performance.
    Gilbert AL; Miles DB
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28814653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of plasticity and adaptive responses to climate change along climate gradients.
    Kingsolver JG; Buckley LB
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28814652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus.
    van Dijk P; Staaks G; Hardewig I
    Oecologia; 2002 Feb; 130(4):496-504. PubMed ID: 28547250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How photoperiod influences body temperature selection in Lacerta viridis.
    Rismiller PD; Heldmaier G
    Oecologia; 1988 Feb; 75(1):125-131. PubMed ID: 28311845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insect herbivores can choose microclimates to achieve nutritional homeostasis.
    Clissold FJ; Coggan N; Simpson SJ
    J Exp Biol; 2013 Jun; 216(Pt 11):2089-96. PubMed ID: 23430995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circadian rhythm of temperature preference and its neural control in Drosophila.
    Kaneko H; Head LM; Ling J; Tang X; Liu Y; Hardin PE; Emery P; Hamada FN
    Curr Biol; 2012 Oct; 22(19):1851-7. PubMed ID: 22981774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation.
    Huey RB; Kearney MR; Krockenberger A; Holtum JA; Jess M; Williams SE
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1596):1665-79. PubMed ID: 22566674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans?
    Anderson JL; Albergotti L; Ellebracht B; Huey RB; Phillips PC
    BMC Evol Biol; 2011 Jun; 11():157. PubMed ID: 21645395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locusts use dynamic thermoregulatory behaviour to optimize nutritional outcomes.
    Coggan N; Clissold FJ; Simpson SJ
    Proc Biol Sci; 2011 Sep; 278(1719):2745-52. PubMed ID: 21288941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review: Thermal preference in Drosophila.
    Dillon ME; Wang G; Garrity PA; Huey RB
    J Therm Biol; 2009 Apr; 34(3):109-119. PubMed ID: 20161211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization.
    Miller GA; Clissold FJ; Mayntz D; Simpson SJ
    Proc Biol Sci; 2009 Oct; 276(1673):3581-9. PubMed ID: 19625322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An internal thermal sensor controlling temperature preference in Drosophila.
    Hamada FN; Rosenzweig M; Kang K; Pulver SR; Ghezzi A; Jegla TJ; Garrity PA
    Nature; 2008 Jul; 454(7201):217-20. PubMed ID: 18548007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circadian rhythms of locomotor activity and temperature selection in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):695-701. PubMed ID: 17457591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The comparative physiology of food deprivation: from feast to famine.
    Wang T; Hung CC; Randall DJ
    Annu Rev Physiol; 2006; 68():223-51. PubMed ID: 16460272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiology and ecology of dispersal polymorphism in insects.
    Zera AJ; Denno RF
    Annu Rev Entomol; 1997; 42():207-30. PubMed ID: 15012313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature preferences of male field crickets ( Gryllus integer) alter their mating calls.
    Hedrick AV; Perez D; Lichti N; Yew J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Nov; 188(10):799-805. PubMed ID: 12466955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.