These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36003272)

  • 1. Nutritional phenotype underlines the performance trade-offs of
    Shu R; Uy L; Wong AC
    Curr Res Insect Sci; 2022; 2():100026. PubMed ID: 36003272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient-Dependent Impact of Microbes on
    Bing X; Gerlach J; Loeb G; Buchon N
    mBio; 2018 Mar; 9(2):. PubMed ID: 29559576
    [No Abstract]   [Full Text] [Related]  

  • 3. Drosophila melanogaster larvae make nutritional choices that minimize developmental time.
    Rodrigues MA; Martins NE; Balancé LF; Broom LN; Dias AJ; Fernandes AS; Rodrigues F; Sucena É; Mirth CK
    J Insect Physiol; 2015 Oct; 81():69-80. PubMed ID: 26149766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila females trade off good nutrition with high-quality oviposition sites when choosing foods.
    Lihoreau M; Poissonnier LA; Isabel G; Dussutour A
    J Exp Biol; 2016 Aug; 219(Pt 16):2514-24. PubMed ID: 27284071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect.
    Pascacio-Villafán C; Williams T; Birke A; Aluja M
    Sci Rep; 2016 Jul; 6():29413. PubMed ID: 27406923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary shifts in taste coding in the fruit pest
    Dweck HK; Talross GJ; Wang W; Carlson JR
    Elife; 2021 Feb; 10():. PubMed ID: 33616529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oviposition Preference and Larval Performance of Drosophila suzukii (Diptera: Drosophilidae), Spotted-Wing Drosophila: Effects of Fruit Identity and Composition.
    Olazcuaga L; Rode NO; Foucaud J; Facon B; Ravigné V; Ausset A; Leménager N; Loiseau A; Gautier M; Estoup A; Hufbauer RA
    Environ Entomol; 2019 Aug; 48(4):867-881. PubMed ID: 31157861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty Acid Profile as an Indicator of Larval Host for Adult
    Wiman NG; Andrews H; Rudolph E; Lee J; Choi MY
    Insects; 2020 Nov; 11(11):. PubMed ID: 33153021
    [No Abstract]   [Full Text] [Related]  

  • 9. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii.
    Silva-Soares NF; Nogueira-Alves A; Beldade P; Mirth CK
    BMC Ecol; 2017 Jun; 17(1):21. PubMed ID: 28592264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly.
    Rendon D; Walton V; Tait G; Buser J; Lemos Souza I; Wallingford A; Loeb G; Lee J
    Ecol Evol; 2019 Mar; 9(5):2615-2628. PubMed ID: 31061698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carbohydrate types on larval development and adult traits in a polyphagous fruit fly.
    Morimoto J; Nguyen B; Lundbäck I; Than AT; Tabrizi ST; Ponton F; Taylor PW
    J Insect Physiol; 2020 Jan; 120():103969. PubMed ID: 31678599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host Potential and Adaptive Responses of Drosophila suzukii (Diptera: Drosophilidae) to Barbados Cherries.
    Mendonca LP; Oliveira EE; Andreazza F; Rezende SM; Faroni LRD; Guedes RNC; Haddi K
    J Econ Entomol; 2019 Dec; 112(6):3002-3006. PubMed ID: 31289814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary yeast affects preference and performance in
    Bellutti N; Gallmetzer A; Innerebner G; Schmidt S; Zelger R; Koschier EH
    J Pest Sci (2004); 2018; 91(2):651-660. PubMed ID: 29568250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila suzukii energetic pathways are differently modulated by nutritional geometry in males and females.
    Sario S; Mendes RJ; Gonçalves F; Torres L; Santos C
    Sci Rep; 2022 Dec; 12(1):21194. PubMed ID: 36476948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary compromises to metabolic toxins: Ammonia and urea tolerance in Drosophila suzukii and Drosophila melanogaster.
    Belloni V; Galeazzi A; Bernini G; Mandrioli M; Versace E; Haase A
    Physiol Behav; 2018 Jul; 191():146-154. PubMed ID: 29679661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Interspecific Larval Competition on Developmental Parameters in Nutrient Sources Between Drosophila suzukii (Diptera: Drosophilidae) and Zaprionus indianus.
    Shrader ME; Burrack HJ; Pfeiffer DG
    J Econ Entomol; 2020 Feb; 113(1):230-238. PubMed ID: 31742340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the impacts of macronutrients on life-history traits in larval and adult
    Jang T; Lee KP
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30171098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Larval density in the invasive
    Reyes-Ramírez A; Belgaidi Z; Gibert P; Pommier T; Siberchicot A; Mouton L; Desouhant E
    Ecol Evol; 2023 Aug; 13(8):e10433. PubMed ID: 37636864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical Characteristics and Superficial Damage Modulate Persimmon Infestation by Drosophila suzukii (Diptera: Drosophilidae) and Zaprionus indianus.
    Trombin de Souza M; Trombin de Souza M; Bernardi D; Rakes M; Vidal HR; Zawadneak MAC
    Environ Entomol; 2020 Dec; 49(6):1290-1299. PubMed ID: 33051661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life-history consequences of adaptation to larval nutritional stress in Drosophila.
    Kolss M; Vijendravarma RK; Schwaller G; Kawecki TJ
    Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.