These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36003827)

  • 1. Characteristics of unmanned aerial spraying systems and related spray drift: A review.
    Chen P; Douzals JP; Lan Y; Cotteux E; Delpuech X; Pouxviel G; Zhan Y
    Front Plant Sci; 2022; 13():870956. PubMed ID: 36003827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field evaluation of spray drift and nontargeted soybean injury from unmanned aerial spraying system herbicide application under acceptable operation conditions.
    Huang Z; Wang C; Li Y; Zhang H; Zeng A; He X
    Pest Manag Sci; 2023 Mar; 79(3):1140-1153. PubMed ID: 36349383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system.
    Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB
    Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the potential spray drift of a six-rotor unmanned aerial vehicle sprayer using a test bench and airborne drift collectors under low wind velocities: impact of atomization characteristics and application parameters.
    Wongsuk S; Zhu Z; Zheng A; Qi P; Li Y; Huang Z; Han H; Wang C; He X
    Pest Manag Sci; 2024 Dec; 80(12):6053-6067. PubMed ID: 39030971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving UASS pesticide application: optimizing and validating drift and deposition simulations.
    Tang Q; Zhang R; Chen L; Zhang P; Li L; Xu G; Yi T; Hewitt A
    Pest Manag Sci; 2024 Sep; ():. PubMed ID: 39287140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of the control logic of a UASS based on coefficient of variation spraying distribution analysis in an indoor flight simulator.
    Hanif AS; Han X; Yu SH; Han C; Baek SW; Lee CG; Lee DH; Kang YH
    Front Plant Sci; 2023; 14():1235548. PubMed ID: 37670862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray losses study of two pesticides by UASS in integrated rice-crayfish farming system and acute toxicity evaluation on
    Liu Y; Wang G; Li Y; Zhang Z; Pang S; He X; Song J
    Front Plant Sci; 2023; 14():1212818. PubMed ID: 37767301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating spray drift from Uncrewed Aerial Spray Systems: A machine learning and variance-based sensitivity analysis of environmental and spray system parameters.
    Jerome GF; Qianwen H; Francis D; Bernhard G; Guobin W; Yubin L; Beibei G; Jia GW; Nan JY; Volker L
    Sci Total Environ; 2024 Jul; 934():173213. PubMed ID: 38750739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume.
    Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C
    Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard.
    Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X
    Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for
    Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y
    Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the research progress on the deposition and drift of spray droplets by plant protection UAVs.
    Weicai Q; Panyang C
    Sci Rep; 2023 Sep; 13(1):14935. PubMed ID: 37696849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper.
    Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X
    Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing environmental exposure to PPPs in super-high density olive orchards using UAV sprayers.
    Sánchez-Fernández L; Barrera-Báez M; Martínez-Guanter J; Pérez-Ruiz M
    Front Plant Sci; 2023; 14():1272372. PubMed ID: 38239222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality.
    Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I
    Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Back pressure generated by downwash and crosswind on spatial atomization characteristics during UAV spraying: CFD analysis and verification.
    Feng H; Xu P; Yang S; Zheng Y; Li W; Liu W; Zhao H; Jiang S
    Pest Manag Sci; 2024 Mar; 80(3):1348-1360. PubMed ID: 37915287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control Efficacy and Deposition Characteristics of an Unmanned Aerial Spray System Low-Volume Application on Corn Fall Armyworm
    Shan C; Wu J; Song C; Chen S; Wang J; Wang H; Wang G; Lan Y
    Front Plant Sci; 2022; 13():900939. PubMed ID: 36176691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards.
    Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X
    Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring and risk analysis of residual pesticides drifted by unmanned aerial spraying.
    Kim CJ; Yuan X; Kim M; Kyung KS; Noh HH
    Sci Rep; 2023 Jul; 13(1):10834. PubMed ID: 37407576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Buffer zone widths for honeybees from ground and aerial spraying of insecticides.
    Davis BN; Williams CT
    Environ Pollut; 1990; 63(3):247-59. PubMed ID: 15092320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.