These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 36004341)

  • 1. A comprehensive review of methods based on deep learning for diabetes-related foot ulcers.
    Zhang J; Qiu Y; Peng L; Zhou Q; Wang Z; Qi M
    Front Endocrinol (Lausanne); 2022; 13():945020. PubMed ID: 36004341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning in diabetic foot ulcers detection: A comprehensive evaluation.
    Yap MH; Hachiuma R; Alavi A; Brüngel R; Cassidy B; Goyal M; Zhu H; Rückert J; Olshansky M; Huang X; Saito H; Hassanpour S; Friedrich CM; Ascher DB; Song A; Kajita H; Gillespie D; Reeves ND; Pappachan JM; O'Shea C; Frank E
    Comput Biol Med; 2021 Aug; 135():104596. PubMed ID: 34247133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image segmentation using transfer learning and Fast R-CNN for diabetic foot wound treatments.
    Huang HN; Zhang T; Yang CT; Sheen YJ; Chen HM; Chen CJ; Tseng MW
    Front Public Health; 2022; 10():969846. PubMed ID: 36203688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques.
    Goyal M; Reeves ND; Rajbhandari S; Ahmad N; Wang C; Yap MH
    Comput Biol Med; 2020 Feb; 117():103616. PubMed ID: 32072964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional neural networks for wound detection: the role of artificial intelligence in wound care.
    Ohura N; Mitsuno R; Sakisaka M; Terabe Y; Morishige Y; Uchiyama A; Okoshi T; Shinji I; Takushima A
    J Wound Care; 2019 Oct; 28(Sup10):S13-S24. PubMed ID: 31600101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetic foot ulcer classification using mapped binary patterns and convolutional neural networks.
    Al-Garaawi N; Ebsim R; Alharan AFH; Yap MH
    Comput Biol Med; 2022 Jan; 140():105055. PubMed ID: 34839183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing deep learning methods for classification of teeth in dental panoramic radiography.
    Yilmaz S; Tasyurek M; Amuk M; Celik M; Canger EM
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2024 Jul; 138(1):118-127. PubMed ID: 37316425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Faster R-CNN, YOLO, and SSD for Third Molar Angle Detection in Dental Panoramic X-rays.
    Vilcapoma P; Parra Meléndez D; Fernández A; Vásconez IN; Hillmann NC; Gatica G; Vásconez JP
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning model for early detection of diabetic foot using thermogram images.
    Khandakar A; Chowdhury MEH; Ibne Reaz MB; Md Ali SH; Hasan MA; Kiranyaz S; Rahman T; Alfkey R; Bakar AAA; Malik RA
    Comput Biol Med; 2021 Oct; 137():104838. PubMed ID: 34534794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic Foot Ulcer Ischemia and Infection Classification Using EfficientNet Deep Learning Models.
    Liu Z; John J; Agu E
    IEEE Open J Eng Med Biol; 2022; 3():189-201. PubMed ID: 36660100
    [No Abstract]   [Full Text] [Related]  

  • 13. Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images.
    Alaskar H; Hussain A; Al-Aseem N; Liatsis P; Al-Jumeily D
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD.
    Li M; Zhang Z; Lei L; Wang X; Guo X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies of deep learning segmentation models for left ventricle segmentation.
    Shoaib MA; Lai KW; Chuah JH; Hum YC; Ali R; Dhanalakshmi S; Wang H; Wu X
    Front Public Health; 2022; 10():981019. PubMed ID: 36091529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning-Based Classification and Feature Extraction for Predicting Pathogenesis of Foot Ulcers in Patients with Diabetes.
    Sathya Preiya V; Kumar VDA
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning based real-time tourist spots detection and recognition mechanism.
    Chen YC; Yu KM; Kao TH; Hsieh HL
    Sci Prog; 2021 Sep; 104(3_suppl):368504211044228. PubMed ID: 34668799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Machine Learning Approach for Severity Classification of Diabetic Foot Complications Using Thermogram Images.
    Khandakar A; Chowdhury MEH; Reaz MBI; Ali SHM; Kiranyaz S; Rahman T; Chowdhury MH; Ayari MA; Alfkey R; Bakar AAA; Malik RA; Hasan A
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for metadata and image collection at diabetic foot ulcer clinics: enabling research in wound analytics and deep learning.
    Basiri R; Manji K; LeLievre PM; Toole J; Kim F; Khan SS; Popovic MR
    Biomed Eng Online; 2024 Jan; 23(1):12. PubMed ID: 38287324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Diabetic Foot Ulcer Recognition Using Multi-Level Thermographic Image Data.
    Khosa I; Raza A; Anjum M; Ahmad W; Shahab S
    Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.