These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36004507)
1. Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation. Dagès N; Bouthier LV; Matthews L; Manneville S; Divoux T; Poulesquen A; Gibaud T Soft Matter; 2022 Sep; 18(35):6645-6659. PubMed ID: 36004507 [TBL] [Abstract][Full Text] [Related]
2. Correction: Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation. Dagès N; Bouthier LV; Matthews L; Manneville S; Divoux T; Poulesquen A; Gibaud T Soft Matter; 2022 Oct; 18(40):7897-7898. PubMed ID: 36205114 [TBL] [Abstract][Full Text] [Related]
3. Time-connectivity superposition and the gel/glass duality of weak colloidal gels. Keshavarz B; Rodrigues DG; Champenois JB; Frith MG; Ilavsky J; Geri M; Divoux T; McKinley GH; Poulesquen A Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33837153 [TBL] [Abstract][Full Text] [Related]
4. Microstructure and elasticity of dilute gels of colloidal discoids. Kao PK; Solomon MJ; Ganesan M Soft Matter; 2022 Feb; 18(7):1350-1363. PubMed ID: 34932058 [TBL] [Abstract][Full Text] [Related]
5. Two modes of cluster dynamics govern the viscoelasticity of colloidal gels. Cho JH; Bischofberger I Phys Rev E; 2021 Mar; 103(3-1):032609. PubMed ID: 33862797 [TBL] [Abstract][Full Text] [Related]
6. Hybrid colloidal gels with tunable elasticity formed by charge-driven assembly between spherical soft nanoparticles and discotic nanosilicates. Rezvan G; Esmaeili M; Sadati M; Taheri-Qazvini N J Colloid Interface Sci; 2022 Dec; 627():40-52. PubMed ID: 35841707 [TBL] [Abstract][Full Text] [Related]
7. Network physics of attractive colloidal gels: Resilience, rigidity, and phase diagram. Nabizadeh M; Nasirian F; Li X; Saraswat Y; Waheibi R; Hsiao LC; Bi D; Ravandi B; Jamali S Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2316394121. PubMed ID: 38194451 [TBL] [Abstract][Full Text] [Related]
9. Rheological implications of embedded active matter in colloidal gels. Szakasits ME; Saud KT; Mao X; Solomon MJ Soft Matter; 2019 Oct; 15(40):8012-8021. PubMed ID: 31497836 [TBL] [Abstract][Full Text] [Related]
10. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Hsiao LC; Newman RS; Glotzer SC; Solomon MJ Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16029-34. PubMed ID: 22988067 [TBL] [Abstract][Full Text] [Related]
11. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction. Domenech T; Velankar SS Soft Matter; 2015 Feb; 11(8):1500-16. PubMed ID: 25582822 [TBL] [Abstract][Full Text] [Related]
12. Strain hardening and fracture of heat-set fractal globular protein gels. Pouzot M; Nicolai T; Benyahia L; Durand D J Colloid Interface Sci; 2006 Jan; 293(2):376-83. PubMed ID: 16081089 [TBL] [Abstract][Full Text] [Related]
13. Structural change and dynamics of colloidal gels under oscillatory shear flow. Park JD; Ahn KH; Lee SJ Soft Matter; 2015 Dec; 11(48):9262-72. PubMed ID: 26524658 [TBL] [Abstract][Full Text] [Related]
14. Colloidal gels tuned by oscillatory shear. Moghimi E; Jacob AR; Koumakis N; Petekidis G Soft Matter; 2017 Mar; 13(12):2371-2383. PubMed ID: 28277578 [TBL] [Abstract][Full Text] [Related]
15. Clustering and mechanics in dense depletion and thermal gels. Ramakrishnan S; Gopalakrishnan V; Zukoski CF Langmuir; 2005 Oct; 21(22):9917-25. PubMed ID: 16229509 [TBL] [Abstract][Full Text] [Related]