BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36004767)

  • 1. The bimetallic effect promotes the activity of Rh in catalyzed selective hydrogenation of phenol.
    Li S; Zhao H; Ran W; Liu J; Liu R
    Chem Commun (Camb); 2022 Sep; 58(74):10357-10360. PubMed ID: 36004767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly selective hydrogenation of phenol to cyclohexanone over a Pd-loaded N-doped carbon catalyst derived from chitosan.
    Wu Q; Wang L; Zhao B; Huang L; Yu S; Ragauskas AJ
    J Colloid Interface Sci; 2022 Jan; 605():82-90. PubMed ID: 34311315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapour phase hydrogenation of phenol over rhodium on SBA-15 and SBA-16.
    Giraldo L; Bastidas-Barranco M; Moreno-Piraján JC
    Molecules; 2014 Dec; 19(12):20594-612. PubMed ID: 25514052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective and leaching-resistant palladium catalyst on a porous polymer support for phenol hydrogenation.
    Xu S; Du J; Zhou Q; Li H; Wang C; Tang J
    J Colloid Interface Sci; 2021 Dec; 604():876-884. PubMed ID: 34303887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity.
    Diao T; Pun D; Stahl SS
    J Am Chem Soc; 2013 Jun; 135(22):8205-12. PubMed ID: 23662700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explaining the structure sensitivity of Pt and Rh for aqueous-phase hydrogenation of phenol.
    Barth I; Akinola J; Lee J; Gutiérrez OY; Sanyal U; Singh N; Goldsmith BR
    J Chem Phys; 2022 Mar; 156(10):104703. PubMed ID: 35291773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Nitrogen-doping in the Catalytic Transfer Hydrogenation of Phenol to Cyclohexanone with Formic Acid over Pd supported on Carbon Nanotubes.
    Hu B; Li X; Busser W; Schmidt S; Xia W; Li G; Li X; Peng B
    Chemistry; 2021 Jul; 27(42):10948-10956. PubMed ID: 33998733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical water gasification of phenol over Ni-Ru bimetallic catalysts.
    Zhang J; Dasgupta A; Chen Z; Xu D; Savage PE; Guo Y
    Water Res; 2019 Apr; 152():12-20. PubMed ID: 30660094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic dehydrogenation of cyclohexanone to phenol catalyzed by Pd(TFA)2/2-dimethylaminopyridine: evidence for the role of Pd nanoparticles.
    Pun D; Diao T; Stahl SS
    J Am Chem Soc; 2013 Jun; 135(22):8213-21. PubMed ID: 23662607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambient Pressure Ir@Hal-Catalyzed Hydrogenation of Aryl Aldehydes, Ketones, and Phenol.
    Hamdi J; Diehl BN; Do J; Trudell ML
    J Org Chem; 2023 Jul; 88(13):9388-9394. PubMed ID: 37310123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation.
    Zhu Y; Yu G; Yang J; Yuan M; Xu D; Dong Z
    J Colloid Interface Sci; 2019 Jan; 533():259-267. PubMed ID: 30170277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodeposition of Pd onto TiO
    Tian C; Fang H; Chen H; Chen W; Zhou S; Duan X; Liu X; Yuan Y
    Nanoscale; 2020 Jan; 12(4):2603-2612. PubMed ID: 31939951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium (Pd
    Luo YH; Cai Y; Long X; Zhou D; Zhou C; Rittmann BE
    Environ Sci Technol; 2022 Apr; 56(7):4447-4456. PubMed ID: 35230835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Hydrogen Activation, Spillover, and Desorption with Pd-Au Single-Atom Alloys.
    Lucci FR; Darby MT; Mattera MF; Ivimey CJ; Therrien AJ; Michaelides A; Stamatakis M; Sykes EC
    J Phys Chem Lett; 2016 Feb; 7(3):480-5. PubMed ID: 26747698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater.
    Xia C; Liu Y; Zhou S; Yang C; Liu S; Xu J; Yu J; Chen J; Liang X
    J Hazard Mater; 2009 Sep; 169(1-3):1029-33. PubMed ID: 19477071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Au-Pd alloy nanoparticles supported on layered double hydroxide for heterogeneously catalyzed aerobic oxidative dehydrogenation of cyclohexanols and cyclohexanones to phenols.
    Jin X; Taniguchi K; Yamaguchi K; Mizuno N
    Chem Sci; 2016 Aug; 7(8):5371-5383. PubMed ID: 30155190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Hydrogenation of Phenol and Derivatives over Polymer-Functionalized Carbon-Nanofiber-Supported Palladium Using Sodium Formate as the Hydrogen Source.
    Chen A; Li Y; Chen J; Zhao G; Ma L; Yu Y
    Chempluschem; 2013 Nov; 78(11):1370-1378. PubMed ID: 31986641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress on selective hydrogenation of phenol toward cyclohexanone or cyclohexanol.
    Xue G; Yin L; Shao S; Li G
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34757948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High surface area biochar from Sargassum tenerrimum as potential catalyst support for selective phenol hydrogenation.
    Kumar A; Kumar J; Bhaskar T
    Environ Res; 2020 Jul; 186():109533. PubMed ID: 32334171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.