These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36004872)
1. Application of Tubular Reactor Technologies for the Acceleration of Biodiesel Production. Awogbemi O; Kallon DVV Bioengineering (Basel); 2022 Jul; 9(8):. PubMed ID: 36004872 [TBL] [Abstract][Full Text] [Related]
2. Membrane technology as a promising alternative in biodiesel production: a review. Shuit SH; Ong YT; Lee KT; Subhash B; Tan SH Biotechnol Adv; 2012; 30(6):1364-80. PubMed ID: 22366515 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, catalysts and enhancement technologies of biodiesel from oil feedstock - A review. Wang L; Wang H; Fan J; Han Z Sci Total Environ; 2023 Dec; 904():166982. PubMed ID: 37741378 [TBL] [Abstract][Full Text] [Related]
4. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst. Meng YL; Tian SJ; Li SF; Wang BY; Zhang MH Bioresour Technol; 2013 May; 136():730-4. PubMed ID: 23558183 [TBL] [Abstract][Full Text] [Related]
5. Acousto-chemical analysis in multi-transducer sonochemical reactors for biodiesel production. Hussain MN; Janajreh I Ultrason Sonochem; 2018 Jan; 40(Pt A):184-193. PubMed ID: 28946413 [TBL] [Abstract][Full Text] [Related]
6. Modeling and simulation of biodiesel synthesis in fixed bed and packed bed membrane reactors using heterogeneous catalyst: a comparative study. Omranpour S; Larimi A Sci Rep; 2024 May; 14(1):10153. PubMed ID: 38698044 [TBL] [Abstract][Full Text] [Related]
7. Catalytic biodiesel production from Jatropha curcas oil: A comparative analysis of microchannel, fixed bed, and microwave reactor systems with recycled ZSM-5 catalyst. Sathiyamoorthi E; Lee J; Devanesan S; Priya SD; Shanmuganathan R Environ Res; 2024 Oct; 258():119474. PubMed ID: 38914253 [TBL] [Abstract][Full Text] [Related]
8. Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Wang X; Liu X; Zhao C; Ding Y; Xu P Bioresour Technol; 2011 May; 102(10):6352-5. PubMed ID: 21435865 [TBL] [Abstract][Full Text] [Related]
9. A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. Abdul Hakim Shaah M; Hossain MS; Salem Allafi FA; Alsaedi A; Ismail N; Ab Kadir MO; Ahmad MI RSC Adv; 2021 Jul; 11(40):25018-25037. PubMed ID: 35481051 [TBL] [Abstract][Full Text] [Related]
10. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation. Crudo D; Bosco V; CavagliĆ G; Grillo G; Mantegna S; Cravotto G Ultrason Sonochem; 2016 Nov; 33():220-225. PubMed ID: 27245973 [TBL] [Abstract][Full Text] [Related]
11. Conversion of lipid from food waste to biodiesel. Karmee SK; Linardi D; Lee J; Lin CS Waste Manag; 2015 Jul; 41():169-73. PubMed ID: 25843356 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. Farouk SM; Tayeb AM; Abdel-Hamid SMS; Osman RM Environ Sci Pollut Res Int; 2024 Feb; 31(9):12722-12747. PubMed ID: 38253825 [TBL] [Abstract][Full Text] [Related]
13. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Baroutian S; Aroua MK; Raman AA; Sulaiman NM Bioresour Technol; 2011 Jan; 102(2):1095-102. PubMed ID: 20888219 [TBL] [Abstract][Full Text] [Related]
14. Continuous-flow biodiesel production using slit-channel reactors. Kalu EE; Chen KS; Gedris T Bioresour Technol; 2011 Mar; 102(6):4456-61. PubMed ID: 21256742 [TBL] [Abstract][Full Text] [Related]
15. A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol. Okoye PU; Longoria A; Sebastian PJ; Wang S; Li S; Hameed BH Sci Total Environ; 2020 Jun; 719():134595. PubMed ID: 31864781 [TBL] [Abstract][Full Text] [Related]
16. Biodiesel production from palm olein: A sustainable bioresource for Nigeria. Ishola F; Adelekan D; Mamudu A; Abodunrin T; Aworinde A; Olatunji O; Akinlabi S Heliyon; 2020 Apr; 6(4):e03725. PubMed ID: 32322719 [TBL] [Abstract][Full Text] [Related]
17. A continuous-flow biodiesel production process using a rotating packed bed. Chen YH; Huang YH; Lin RH; Shang NC Bioresour Technol; 2010 Jan; 101(2):668-73. PubMed ID: 19751970 [TBL] [Abstract][Full Text] [Related]
18. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges. Singh S; Pandey D; Saravanabhupathy S; Daverey A; Dutta K; Arunachalam K Environ Res; 2022 May; 207():112100. PubMed ID: 34619127 [TBL] [Abstract][Full Text] [Related]
19. Biodiesel production in a magnetically fluidized bed reactor using whole-cell biocatalysts immobilized within ferroferric oxide-polyvinyl alcohol composite beads. Liu J; Chen G; Yan B; Yi W; Yao J Bioresour Technol; 2022 Jul; 355():127253. PubMed ID: 35513239 [TBL] [Abstract][Full Text] [Related]
20. A review on recent biodiesel intensification process through cavitation and microwave reactors: Yield, energy, and economic analysis. Bizualem YD; Nurie AG Heliyon; 2024 Jan; 10(2):e24643. PubMed ID: 38312610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]