These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36004872)
61. Advances in nano-catalysts based biodiesel production from non-food feedstocks. Gardy J; Rehan M; Hassanpour A; Lai X; Nizami AS J Environ Manage; 2019 Nov; 249():109316. PubMed ID: 31472308 [TBL] [Abstract][Full Text] [Related]
62. Environmental sustainability assessment of biodiesel production from Jatropha curcas L. seeds oil in Pakistan. Khanam T; Khalid F; Manzoor W; Rashedi A; Hadi R; Ullah F; Rehman F; Akhtar A; Babu NBK; Hussain M PLoS One; 2021; 16(11):e0258409. PubMed ID: 34793466 [TBL] [Abstract][Full Text] [Related]
63. Production of biodiesel from Helmi M; Hemmati A; Tahvildari K J Environ Health Sci Eng; 2022 Jun; 20(1):187-204. PubMed ID: 35669796 [TBL] [Abstract][Full Text] [Related]
64. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review. Mofijur M; Siddiki SYA; Shuvho MBA; Djavanroodi F; Fattah IMR; Ong HC; Chowdhury MA; Mahlia TMI Chemosphere; 2021 May; 270():128642. PubMed ID: 33127105 [TBL] [Abstract][Full Text] [Related]
65. Continuous enzymatic biodiesel production from coconut oil in two-stage packed-bed reactor incorporating an extracting column to remove glycerol formed as by-product. Costa E Silva W; Freitas L; Oliveira PC; de Castro HF Bioprocess Biosyst Eng; 2016 Oct; 39(10):1611-7. PubMed ID: 27277745 [TBL] [Abstract][Full Text] [Related]
66. Model-Based Quality, Exergy, and Economic Analysis of Fluidized Bed Membrane Reactors. Nafees T; Bhatti AA; Jadoon UK; Ahmad F; Ahmad I; Kano M; Menezes BC; Ahsan M; Syed NUH Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677531 [TBL] [Abstract][Full Text] [Related]
67. The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. Tahvildari K; Anaraki YN; Fazaeli R; Mirpanji S; Delrish E J Environ Health Sci Eng; 2015; 13():73. PubMed ID: 26500782 [TBL] [Abstract][Full Text] [Related]
68. Towards sustainable biodiesel production by solar intensification of waste cooking oil and engine parameter assessment studies. Sivarethinamohan S; Hanumanthu JR; Gaddam K; Ravindiran G; Alagumalai A Sci Total Environ; 2022 Jan; 804():150236. PubMed ID: 34520913 [TBL] [Abstract][Full Text] [Related]
69. Biodiesel production from palm oil using combined mechanical stirred and ultrasonic reactor. Choedkiatsakul I; Ngaosuwan K; Cravotto G; Assabumrungrat S Ultrason Sonochem; 2014 Jul; 21(4):1585-91. PubMed ID: 24418101 [TBL] [Abstract][Full Text] [Related]
70. Production of Biodiesel from Underutilized Algae Oil: Prospects and Current Challenges Encountered in Developing Countries. Adewuyi A Biology (Basel); 2022 Sep; 11(10):. PubMed ID: 36290321 [TBL] [Abstract][Full Text] [Related]
71. Cost analysis of oil cake-to-biodiesel production in packed-bed micro-flow reactors with immobilized lipases. Budžaki S; Sundaram S; Tišma M; Hessel V J Biosci Bioeng; 2019 Jul; 128(1):98-102. PubMed ID: 30745064 [TBL] [Abstract][Full Text] [Related]
72. Enzymatic reactors for biodiesel synthesis: Present status and future prospects. Poppe JK; Fernandez-Lafuente R; Rodrigues RC; Ayub MA Biotechnol Adv; 2015; 33(5):511-25. PubMed ID: 25687275 [TBL] [Abstract][Full Text] [Related]
73. Biodiesel production and characteristics from waste frying oils: sources, challenges, and circular economic perspective. Senusi W; Ahmad MI; Binhweel F; Shalfoh E; Alsaedi S; Shakir MA Environ Sci Pollut Res Int; 2024 May; 31(23):33239-33258. PubMed ID: 38696017 [TBL] [Abstract][Full Text] [Related]
74. Techno-economic evaluation of biodiesel production from waste cooking oil--a case study of Hong Kong. Karmee SK; Patria RD; Lin CS Int J Mol Sci; 2015 Feb; 16(3):4362-71. PubMed ID: 25809602 [TBL] [Abstract][Full Text] [Related]
75. Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Halim SF; Kamaruddin AH; Fernando WJ Bioresour Technol; 2009 Jan; 100(2):710-6. PubMed ID: 18819793 [TBL] [Abstract][Full Text] [Related]
76. Preparation and characterization of biodiesel from waste cooking oils using heterogeneous Catalyst(Cat.TS-7) based on natural zeolite. Saad M; Siyo B; Alrakkad H Heliyon; 2023 Jun; 9(6):e15836. PubMed ID: 37274706 [TBL] [Abstract][Full Text] [Related]
77. Ultrasonic, hydrodynamic and microwave biodiesel synthesis - A comparative study for continuous process. Chipurici P; Vlaicu A; Calinescu I; Vinatoru M; Vasilescu M; Ignat ND; Mason TJ Ultrason Sonochem; 2019 Oct; 57():38-47. PubMed ID: 31208617 [TBL] [Abstract][Full Text] [Related]
78. Nanoferrites heterogeneous catalysts for biodiesel production from soybean and canola oil: a review. Bharti MK; Chalia S; Thakur P; Sridhara SN; Thakur A; Sharma PB Environ Chem Lett; 2021; 19(5):3727-3746. PubMed ID: 33967660 [TBL] [Abstract][Full Text] [Related]
79. A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. Mahdi HI; Ramlee NN; da Silva Duarte JL; Cheng YS; Selvasembian R; Amir F; de Oliveira LH; Wan Azelee NI; Meili L; Rangasamy G Chemosphere; 2023 Apr; 319():138003. PubMed ID: 36731678 [TBL] [Abstract][Full Text] [Related]
80. Biodiesel production in a membrane reactor using MCM-41 supported solid acid catalyst. Xu W; Gao L; Wang S; Xiao G Bioresour Technol; 2014 May; 159():286-91. PubMed ID: 24657760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]