BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36005039)

  • 1. Application of Heat-Enhancement for Improving the Sensitivity of Quartz Crystal Microbalance.
    Song C; Ma Z; Li C; Zhang H; Zhu Z; Wang J
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of the Mass Sensitivity of Quartz Crystal Microbalance under Overtone Modes Using Electrodeposition Method.
    Hu J; Yesilbas G; Li Y; Geng X; Li P; Chen J; Wu X; Knoll A; Ren TL
    Anal Chem; 2022 Apr; 94(15):5760-5768. PubMed ID: 35377148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High temperature mass detection using a carbon nanotube bilayer modified quartz crystal microbalance as a GC detector.
    Benz M; Benz L; Patel SV
    Anal Chem; 2015 Mar; 87(5):2779-87. PubMed ID: 25627574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-scan measurement of conductance of a quartz crystal microbalance array coupled with resonant markers for biosensing in liquid phase.
    Hsiao HY; Chen RL; Cheng TJ
    Rev Sci Instrum; 2009 Apr; 80(4):044301. PubMed ID: 19405677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Thermal Gradient Effects on a Quartz Crystal Microbalance.
    Magni M; Scaccabarozzi D; Palomba E; Zampetti E; Saggin B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pocketable Biosensor Based on Quartz-Crystal Microbalance and Its Application to DNA Detection.
    Yoshimine H; Sasaki K; Furusawa H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D; Kang Q; Li X; Cai H; Wang Y
    Anal Chim Acta; 2007 Jun; 593(2):188-95. PubMed ID: 17543606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit.
    García-Martinez G; Bustabad EA; Perrot H; Gabrielli C; Bucur B; Lazerges M; Rose D; Rodriguez-Pardo L; Fariña J; Compère C; Vives AA
    Sensors (Basel); 2011; 11(8):7656-64. PubMed ID: 22164037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.
    Emir Diltemiz S; Keçili R; Ersöz A; Say R
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28245588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review.
    Ogi H
    Proc Jpn Acad Ser B Phys Biol Sci; 2013; 89(9):401-17. PubMed ID: 24213205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and cellular level characterization of cytoskeletal mechanics using a quartz crystal microbalance.
    Kerivan EM; Tobin L; Basil M; Reinemann DN
    Cytoskeleton (Hoboken); 2023; 80(5-6):100-111. PubMed ID: 36891731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quartz crystal microbalance with thermally-controlled surface adhesion for an efficient fine dust collection and sensing.
    Jang IR; Jung SI; Lee G; Park I; Kim SB; Kim HJ
    J Hazard Mater; 2022 Feb; 424(Pt B):127560. PubMed ID: 34879536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Note: sensitivity multiplication module for quartz crystal microbalance applications.
    Burda I; Silaghi A; Tunyagi A; Simon S; Popescu O
    Rev Sci Instrum; 2014 Feb; 85(2):026116. PubMed ID: 24593416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Desiccated Extracellular Vesicles by Quartz Crystal Microbalance.
    Chernyshev VS; Skliar M
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEMS biosensor for monitoring water toxicity based on quartz crystal microbalance.
    Lee KL; Ng S; Li F; Nordin AN; Voiculescu I
    Biointerphases; 2020 Mar; 15(2):021006. PubMed ID: 32216379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Real-Time Method for Improving Stability of Monolithic Quartz Crystal Microbalance Operating under Harsh Environmental Conditions.
    Fernández R; Calero M; Jiménez Y; Arnau A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-Frequency, Wireless MEMS QCM Biosensor for Direct, Label-Free Detection of Biomarkers in a Large Amount of Contaminants.
    Noi K; Iwata A; Kato F; Ogi H
    Anal Chem; 2019 Aug; 91(15):9398-9402. PubMed ID: 31264405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly Imprinted Polymer-Based Quartz Crystal Microbalance Sensor for the Clinical Detection of Insulin.
    Çimen D; Bereli N; Kartal F; Denizli A
    Methods Mol Biol; 2021; 2359():209-222. PubMed ID: 34410672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal.
    Dong ZM; Zhao GC
    Analyst; 2013 Apr; 138(8):2456-62. PubMed ID: 23467569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications.
    Montagut YJ; García JV; Jiménez Y; March C; Montoya A; Arnau A
    Rev Sci Instrum; 2011 Jun; 82(6):064702. PubMed ID: 21721715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.