BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3600533)

  • 1. Relative electron beam measurements: scaling depths in clear polystyrene to equivalent depths in water.
    Ten Haken RK; Fraass BA
    Med Phys; 1987; 14(3):410-3. PubMed ID: 3600533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mean energy, energy-range relationships and depth-scaling factors for clinical electron beams.
    Ding GX; Rogers DW
    Med Phys; 1996 Mar; 23(3):361-76. PubMed ID: 8815379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental determination of depth-scaling factors and central axis depth dose for clinical electron beams.
    Huq MS; Yue N; Suntharalingam N
    Int J Cancer; 2001 Aug; 96(4):232-7. PubMed ID: 11474497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the recommendations of the TG-25 protocol for determination of depth dose curves for electron beams using ionization chambers.
    Huq MS; Agostinelli AG; Nath R
    Med Phys; 1995 Aug; 22(8):1333-7. PubMed ID: 7476721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical methods of electron depth-dose measurement compared to use of the NACP design chamber in water.
    Ten Haken RK; Fraass BA; Jost RJ
    Med Phys; 1987; 14(6):1060-6. PubMed ID: 3696072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparisons of electron beam dose measurements in water and polystyrene using various dosimeters.
    Kase KR; Adler GJ; Bjärngard BE
    Med Phys; 1982; 9(1):13-9. PubMed ID: 6804767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.
    Bazalova-Carter M; Liu M; Palma B; Dunning M; McCormick D; Hemsing E; Nelson J; Jobe K; Colby E; Koong AC; Tantawi S; Dolgashev V; Maxim PG; Loo BW
    Med Phys; 2015 Apr; 42(4):1606-13. PubMed ID: 25832051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth ionization curves for an unmodulated proton beam measured with different ionization chambers.
    Mobit PN; Sandison GA; Bloch C
    Med Phys; 2000 Dec; 27(12):2780-7. PubMed ID: 11190961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of ionisation in water, polystyrene and a 'solid water' phantom material for electron beams.
    Thwaites DI
    Phys Med Biol; 1985 Jan; 30(1):41-53. PubMed ID: 3975275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of electron beam mean incident energy from d50 (ionization) values.
    Ten Haken RK; Fraass BA
    Med Phys; 1987; 14(6):985-91. PubMed ID: 3696085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the electron pencil beam redefinition algorithm to electron arc therapy.
    Chi PC; Hogstrom KR; Starkschall G; Boyd RA; Tucker SL; Antolak JA
    Med Phys; 2006 Jul; 33(7):2369-83. PubMed ID: 16898439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measured overall perturbation factors at depths greater than dmax for ionization chambers in electron beams.
    Reft CS; Kuchnir FT
    Med Phys; 1999 Feb; 26(2):208-13. PubMed ID: 10076976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ionisation measurements in water and polystyrene for electron beam dosimetry.
    Bruinvis IA; Heukelom S; Mijnheer BJ
    Phys Med Biol; 1985 Oct; 30(10):1043-53. PubMed ID: 4070361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling skin collimation using the electron pencil beam redefinition algorithm.
    Chi PC; Hogstrom KR; Starkschall G; Antolak JA; Boyd RA
    Med Phys; 2005 Nov; 32(11):3409-18. PubMed ID: 16370427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo study of correction factors for the use of plastic phantoms in clinical electron dosimetry.
    Araki F
    Med Phys; 2007 Nov; 34(11):4368-77. PubMed ID: 18072502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.
    Zink K; Wulff J
    Med Phys; 2011 Feb; 38(2):1045-54. PubMed ID: 21452742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron fluence correction factors for conversion of dose in plastic to dose in water.
    Ding GX; Rogers DW; Cygler JE; Mackie TR
    Med Phys; 1997 Feb; 24(2):161-76. PubMed ID: 9048356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic parameters of 6-22 MeV electron beams from a 25-MeV linear accelerator.
    Jamshidi A; Kuchnir FT; Reft CS
    Med Phys; 1987; 14(2):282-8. PubMed ID: 3587156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams.
    Ono T; Araki F; Yoshiyama F
    Med Phys; 2011 Aug; 38(8):4647-54. PubMed ID: 21928637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.