BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36005641)

  • 1. Trans-Species Fecal Transplant Revealed the Role of the Gut Microbiome as a Contributor to Energy Metabolism and Development of Skeletal Muscle.
    Cai L; Li M; Zhou S; Zhu X; Zhang X; Xu Q
    Metabolites; 2022 Aug; 12(8):. PubMed ID: 36005641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obese Ningxiang pig-derived microbiota rewires carnitine metabolism to promote muscle fatty acid deposition in lean DLY pigs.
    Yin J; Li Y; Tian Y; Zhou F; Ma J; Xia S; Yang T; Ma L; Zeng Q; Liu G; Yin Y; Huang X
    Innovation (Camb); 2023 Sep; 4(5):100486. PubMed ID: 37636278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes.
    Xie C; Teng J; Wang X; Xu B; Niu Y; Ma L; Yan X
    Anim Nutr; 2022 Jun; 9():84-99. PubMed ID: 35949981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated analysis of multi-tissues lipidome and gut microbiome reveals microbiota-induced shifts on lipid metabolism in pigs.
    Xie C; Zhu X; Xu B; Niu Y; Zhang X; Ma L; Yan X
    Anim Nutr; 2022 Sep; 10():280-293. PubMed ID: 35785254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study on Jejunal Immunity and Microbial Composition of Growing-Period Tibetan Pigs and Duroc × (Landrace × Yorkshire) Pigs.
    Yang Y; Li Y; Xie Y; Qiao S; Yang L; Pan H
    Front Vet Sci; 2022; 9():890585. PubMed ID: 35548051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut microbial profiles and the role in lipid metabolism in Shaziling pigs.
    Ma J; Duan Y; Li R; Liang X; Li T; Huang X; Yin Y; Yin J
    Anim Nutr; 2022 Jun; 9():345-356. PubMed ID: 35600540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice.
    Yan H; Diao H; Xiao Y; Li W; Yu B; He J; Yu J; Zheng P; Mao X; Luo Y; Zeng B; Wei H; Chen D
    Sci Rep; 2016 Aug; 6():31786. PubMed ID: 27545196
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Cai L; Wang X; Zhu X; Xu Y; Qin W; Ren J; Jiang Q; Yan X
    mSystems; 2024 Jun; 9(6):e0021424. PubMed ID: 38780275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling.
    Hu J; Chen J; Xu X; Hou Q; Ren J; Yan X
    Microbiome; 2023 May; 11(1):102. PubMed ID: 37158970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic relationships between efficiency traits and gut microbiota traits in growing pigs being fed with a conventional or a high-fiber diet.
    Déru V; Bouquet A; Zemb O; Blanchet B; De Almeida ML; Cauquil L; Carillier-Jacquin C; Gilbert H
    J Anim Sci; 2022 Jun; 100(6):. PubMed ID: 35579995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Fecal Microbial Composition and Metagenomic Functional Capacities Associated With Feed Efficiency in Commercial DLY Pigs.
    Quan J; Cai G; Yang M; Zeng Z; Ding R; Wang X; Zhuang Z; Zhou S; Li S; Yang H; Li Z; Zheng E; Huang W; Yang J; Wu Z
    Front Microbiol; 2019; 10():52. PubMed ID: 30761104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Different Pig Fecal Microbiota Transplantation on Mice Intestinal Function and Microbiota Changes During Cold Exposure.
    Liu T; Guo Y; Lu C; Cai C; Gao P; Cao G; Li B; Guo X; Yang Y
    Front Vet Sci; 2022; 9():805815. PubMed ID: 35498721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of Structural Composition and Function of Intestinal Microbiota between Chinese Indigenous Laiwu Pigs and Commercial DLY Pigs.
    Li C; Zhao X; Zhao G; Xue H; Wang Y; Ren Y; Li J; Wang H; Wang J; Song Q
    Vet Sci; 2023 Aug; 10(8):. PubMed ID: 37624311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fecal Microbiota Transplantation Donor and Dietary Fiber Intervention Collectively Contribute to Gut Health in a Mouse Model.
    Zhong Y; Cao J; Ma Y; Zhang Y; Liu J; Wang H
    Front Immunol; 2022; 13():842669. PubMed ID: 35185934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut Microbiota Is a Major Contributor to Adiposity in Pigs.
    Yang H; Xiang Y; Robinson K; Wang J; Zhang G; Zhao J; Xiao Y
    Front Microbiol; 2018; 9():3045. PubMed ID: 30619136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gut microbiota attenuates muscle wasting by regulating energy metabolism in chemotherapy-induced malnutrition rats.
    Chen H; Xu C; Zhang F; Liu Y; Guo Y; Yao Q
    Cancer Chemother Pharmacol; 2020 Jun; 85(6):1049-1062. PubMed ID: 32415349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gut Microbiota Composition and Diversity in Different Commercial Swine Breeds in Early and Finishing Growth Stages.
    Ma J; Chen J; Gan M; Chen L; Zhao Y; Zhu Y; Niu L; Zhang S; Zhu L; Shen L
    Animals (Basel); 2022 Jun; 12(13):. PubMed ID: 35804507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut microbiome composition differences among breeds impact feed efficiency in swine.
    Bergamaschi M; Tiezzi F; Howard J; Huang YJ; Gray KA; Schillebeeckx C; McNulty NP; Maltecca C
    Microbiome; 2020 Jul; 8(1):110. PubMed ID: 32698902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut Microbiota Influence Lipid Metabolism of Skeletal Muscle in Pigs.
    Wu C; Lyu W; Hong Q; Zhang X; Yang H; Xiao Y
    Front Nutr; 2021; 8():675445. PubMed ID: 33928112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis.
    Nay K; Jollet M; Goustard B; Baati N; Vernus B; Pontones M; Lefeuvre-Orfila L; Bendavid C; Rué O; Mariadassou M; Bonnieu A; Ollendorff V; Lepage P; Derbré F; Koechlin-Ramonatxo C
    Am J Physiol Endocrinol Metab; 2019 Jul; 317(1):E158-E171. PubMed ID: 31039010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.