These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36005721)

  • 1. Tuning the Gas Separation Performances of Smectic Liquid Crystalline Polymer Membranes by Molecular Engineering.
    Kloos J; Houben M; Lub J; Nijmeijer K; Schenning APHJ; Borneman Z
    Membranes (Basel); 2022 Aug; 12(8):. PubMed ID: 36005721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Order and Orientation in Liquid Crystalline Polymer Membranes for Gas Separation.
    Kloos J; Jansen N; Houben M; Casimiro A; Lub J; Borneman Z; Schenning APHJ; Nijmeijer K
    Chem Mater; 2021 Nov; 33(21):8323-8333. PubMed ID: 34776611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-Dependent Gas Transport Behavior in Cross-Linked Liquid Crystalline Polyacrylate Membranes.
    Rabie F; Poláková L; Fallas S; Sedlakova Z; Marand E; Martin SM
    Membranes (Basel); 2019 Aug; 9(8):. PubMed ID: 31434248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas permeation of LC films observed by smectic bubble expansion.
    Ishii Y; Tabe Y
    Eur Phys J E Soft Matter; 2009 Nov; 30(3):257-64. PubMed ID: 19816725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Characterization of Membrane Gas Separation under Very High Temperatures and Pressure: Single- and Mixed-Gas CO
    Neyertz S; Brown D; Salimi S; Radmanesh F; Benes NE
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Machine Learning and Molecular Simulations to Unlock Gas Separation Potentials of MOF Membranes and MOF/Polymer MMMs.
    Daglar H; Keskin S
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32134-32148. PubMed ID: 35818710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation.
    Hunger K; Schmeling N; Jeazet HB; Janiak C; Staudt C; Kleinermanns K
    Membranes (Basel); 2012 Oct; 2(4):727-63. PubMed ID: 24958427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Design of Halloysite Surface Chemistry for High Performance Nanotube-Thin Film Nanocomposite Gas Separation Membranes.
    Chehrazi E; Sharif A; Karimi M
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37527-37537. PubMed ID: 32692915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smectic Liquid Crystalline Polymer Membranes with Aligned Nanopores in an Anisotropic Scaffold.
    Houben SJA; van Merwijk SA; Langers BJH; Oosterlaken BM; Borneman Z; Schenning APHJ
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7592-7599. PubMed ID: 33539067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling gas permeation through membranes by kinetic Monte Carlo: applications to H2, O2, and N2 in hydrated Nafion®.
    Dorenbos G; Morohoshi K
    J Chem Phys; 2011 Jan; 134(4):044133. PubMed ID: 21280713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZIF-95 as a filler for enhanced gas separation performance of polysulfone membrane.
    Shafiq S; Al-Maythalony BA; Usman M; Ba-Shammakh MS; Al-Shammari AA
    RSC Adv; 2021 Oct; 11(54):34319-34328. PubMed ID: 35497263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphenylsulfone (PPSU)-Based Copolymeric Membranes: Effects of Chemical Structure and Content on Gas Permeation and Separation.
    Feng F; Liang CZ; Wu J; Weber M; Maletzko C; Zhang S; Chung TS
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of Multilayer Hybrid Coating on PSF Hollow Fiber Membrane for Enhanced Gas Separation.
    Roslan RA; Lau WJ; Lai GS; Zulhairun AK; Yeong YF; Ismail AF; Matsuura T
    Membranes (Basel); 2020 Nov; 10(11):. PubMed ID: 33187312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gemini Thermotropic Smectic Liquid Crystals for Two-Dimensional Nanostructured Water-Treatment Membranes.
    Hamaguchi K; Ichikawa R; Kajiyama S; Torii S; Hayashi Y; Kumaki J; Katayama H; Kato T
    ACS Appl Mater Interfaces; 2021 May; 13(17):20598-20605. PubMed ID: 33836127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations.
    Cozmuta I; Blanco M; Goddard WA
    J Phys Chem B; 2007 Mar; 111(12):3151-66. PubMed ID: 17388466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraselective Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties.
    Zhang C; Koros WJ
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH
    Miricioiu MG; Iacob C; Nechifor G; Niculescu VC
    Front Chem; 2019; 7():332. PubMed ID: 31263688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(1-trimethylsilyl-1-propyne)-Based Hybrid Membranes: Effects of Various Nanofillers and Feed Gas Humidity on CO₂ Permeation.
    Dai Z; Løining V; Deng J; Ansaloni L; Deng L
    Membranes (Basel); 2018 Sep; 8(3):. PubMed ID: 30189678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Blend Composition and Silica Nanoparticles on the Morphology and Gas Separation Performance of PU/PVA Blend Membranes.
    Shirvani H; Maghami S; Pournaghshband Isfahani A; Sadeghi M
    Membranes (Basel); 2019 Jul; 9(7):. PubMed ID: 31284399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.