BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 36005887)

  • 1. propeller: testing for differences in cell type proportions in single cell data.
    Phipson B; Sim CB; Porrello ER; Hewitt AW; Powell J; Oshlack A
    Bioinformatics; 2022 Oct; 38(20):4720-4726. PubMed ID: 36005887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.
    Chen C; Leung YY; Ionita M; Wang LS; Li M
    Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer.
    Shen Y; Chu Q; Timko MP; Fan L
    Bioinformatics; 2021 Nov; 37(22):4115-4122. PubMed ID: 34048541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaeda computationally annotates doublets in single-cell RNA sequencing data.
    Schriever H; Kostka D
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data.
    Ye C; Speed TP; Salim A
    Bioinformatics; 2019 Dec; 35(24):5155-5162. PubMed ID: 31197307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical simulator scDesign for rational scRNA-seq experimental design.
    Li WV; Li JJ
    Bioinformatics; 2019 Jul; 35(14):i41-i50. PubMed ID: 31510652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imputing dropouts for single-cell RNA sequencing based on multi-objective optimization.
    Jin K; Li B; Yan H; Zhang XF
    Bioinformatics; 2022 Jun; 38(12):3222-3230. PubMed ID: 35485740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data.
    Zhang W; Wei Y; Zhang D; Xu EY
    Bioinformatics; 2020 May; 36(10):3124-3130. PubMed ID: 32053182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets.
    Andreatta M; Berenstein AJ; Carmona SJ
    Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-level somatic mutation detection from single-cell RNA sequencing.
    Vu TN; Nguyen HN; Calza S; Kalari KR; Wang L; Pawitan Y
    Bioinformatics; 2019 Nov; 35(22):4679-4687. PubMed ID: 31028395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FBA: feature barcoding analysis for single cell RNA-Seq.
    Duan J; Hon GC
    Bioinformatics; 2021 Nov; 37(22):4266-4268. PubMed ID: 33999185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-negative Independent Factor Analysis disentangles discrete and continuous sources of variation in scRNA-seq data.
    Mao W; Pouyan MB; Kostka D; Chikina M
    Bioinformatics; 2022 May; 38(10):2749-2756. PubMed ID: 35561207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scWMC: weighted matrix completion-based imputation of scRNA-seq data via prior subspace information.
    Su Y; Wang F; Zhang S; Liang Y; Wong KC; Li X
    Bioinformatics; 2022 Sep; 38(19):4537-4545. PubMed ID: 35984287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.
    Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPARSim single cell: a count data simulator for scRNA-seq data.
    Baruzzo G; Patuzzi I; Di Camillo B
    Bioinformatics; 2020 Mar; 36(5):1468-1475. PubMed ID: 31598633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data.
    Lawlor N; Marquez EJ; Lee D; Ucar D
    Bioinformatics; 2020 Jun; 36(11):3582-3584. PubMed ID: 32119082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.