These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 36006071)
1. Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI. Bellini D; Carbone I; Rengo M; Vicini S; Panvini N; Caruso D; Iannicelli E; Tombolini V; Laghi A Tomography; 2022 Aug; 8(4):2059-2072. PubMed ID: 36006071 [TBL] [Abstract][Full Text] [Related]
2. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. De Cecco CN; Ganeshan B; Ciolina M; Rengo M; Meinel FG; Musio D; De Felice F; Raffetto N; Tombolini V; Laghi A Invest Radiol; 2015 Apr; 50(4):239-45. PubMed ID: 25501017 [TBL] [Abstract][Full Text] [Related]
3. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. De Cecco CN; Ciolina M; Caruso D; Rengo M; Ganeshan B; Meinel FG; Musio D; De Felice F; Tombolini V; Laghi A Abdom Radiol (NY); 2016 Sep; 41(9):1728-35. PubMed ID: 27056748 [TBL] [Abstract][Full Text] [Related]
4. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Crimì F; Capelli G; Spolverato G; Bao QR; Florio A; Milite Rossi S; Cecchin D; Albertoni L; Campi C; Pucciarelli S; Stramare R Radiol Med; 2020 Dec; 125(12):1216-1224. PubMed ID: 32410063 [TBL] [Abstract][Full Text] [Related]
5. [Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer]. Shu Z; Fang S; Ding Z; Mao D; Pang P; Gong X Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Sep; 21(9):1051-1058. PubMed ID: 30269327 [TBL] [Abstract][Full Text] [Related]
6. Complete Response Evaluation of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy Using Textural Features Obtained from T2 Weighted Imaging and ADC Maps. Azamat S; Karaman Ş; Azamat IF; Ertaş G; Kulle CB; Keskin M; Sakin RND; Bakır B; Oral EN; Kartal MG Curr Med Imaging; 2022; 18(10):1061-1069. PubMed ID: 35240976 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy. Jalil O; Afaq A; Ganeshan B; Patel UB; Boone D; Endozo R; Groves A; Sizer B; Arulampalam T Colorectal Dis; 2017 Apr; 19(4):349-362. PubMed ID: 27538267 [TBL] [Abstract][Full Text] [Related]
8. MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer. Park H; Kim KA; Jung JH; Rhie J; Choi SY Eur Radiol; 2020 Aug; 30(8):4201-4211. PubMed ID: 32270317 [TBL] [Abstract][Full Text] [Related]
9. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039 [TBL] [Abstract][Full Text] [Related]
10. Magnetic Resonance Texture Analysis in Identifying Complete Pathological Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer. Aker M; Ganeshan B; Afaq A; Wan S; Groves AM; Arulampalam T Dis Colon Rectum; 2019 Feb; 62(2):163-170. PubMed ID: 30451764 [TBL] [Abstract][Full Text] [Related]
11. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933 [TBL] [Abstract][Full Text] [Related]
12. Prediction of efficacy of neoadjuvant chemoradiotherapy for rectal cancer: the value of texture analysis of magnetic resonance images. Shu Z; Fang S; Ye Q; Mao D; Cao H; Pang P; Gong X Abdom Radiol (NY); 2019 Nov; 44(11):3775-3784. PubMed ID: 30852633 [TBL] [Abstract][Full Text] [Related]
13. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: Texture analysis of dynamic contrast-enhanced MRI. Zou HH; Yu J; Wei Y; Wu JF; Xu Q J Magn Reson Imaging; 2019 Mar; 49(3):885-893. PubMed ID: 30079601 [TBL] [Abstract][Full Text] [Related]
14. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768 [TBL] [Abstract][Full Text] [Related]
15. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
16. The value of diffusion kurtosis magnetic resonance imaging for assessing treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Yu J; Xu Q; Song JC; Li Y; Dai X; Huang DY; Zhang L; Li Y; Shi HB Eur Radiol; 2017 May; 27(5):1848-1857. PubMed ID: 27631106 [TBL] [Abstract][Full Text] [Related]
17. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192 [TBL] [Abstract][Full Text] [Related]
18. Value of perfusion parameters from golden-angle radial sparse parallel dynamic contrast-enhanced magnetic resonance imaging in predicting pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Pan YN; Gu MY; Mao QL; Wei YG; Zhang L; Tang GY Diagn Interv Radiol; 2024 Jul; 30(4):228-235. PubMed ID: 38528760 [TBL] [Abstract][Full Text] [Related]
19. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI. Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264 [TBL] [Abstract][Full Text] [Related]
20. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]