BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 36006203)

  • 1. Toxigenicity of
    Janaviciene S; Suproniene S; Kadziene G; Pavlenko R; Berzina Z; Bartkevics V
    Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006203
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular Phylogenetic Relationships, Trichothecene Chemotype Diversity and Aggressiveness of Strains in a Global Collection of
    Amarasinghe C; Sharanowski B; Fernando WGD
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31083494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of Mycotoxins Produced by
    Janaviciene S; Venslovas E; Kadziene G; Matelioniene N; Berzina Z; Bartkevics V; Suproniene S
    Toxins (Basel); 2023 Jun; 15(7):. PubMed ID: 37505689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum.
    Amarasinghe CC; Simsek S; Brûlé-Babel A; Fernando WG
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1254-64. PubMed ID: 27264644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy.
    Covarelli L; Beccari G; Prodi A; Generotti S; Etruschi F; Juan C; Ferrer E; Mañes J
    J Sci Food Agric; 2015 Feb; 95(3):540-51. PubMed ID: 24909776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusarium cerealis causing Fusarium head blight of durum wheat and its associated mycotoxins.
    Palacios SA; Del Canto A; Erazo J; Torres AM
    Int J Food Microbiol; 2021 May; 346():109161. PubMed ID: 33773354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests.
    Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC
    Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of wheat (Triticum aestivum L.) resistance, Fusarium graminearum DNA content, strain potential toxin production, and disease severity on deoxynivalenol content.
    Fan P; Gu K; Wu J; Zhou M; Chen C
    J Basic Microbiol; 2019 Nov; 59(11):1105-1111. PubMed ID: 31497881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina.
    Reynoso MM; Ramirez ML; Torres AM; Chulze SN
    Int J Food Microbiol; 2011 Feb; 145(2-3):444-8. PubMed ID: 21320729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of LC-MS/MS Coupled with a Chiral Column for the Determination of 3- or 15-Acetyl Deoxynivalenol Mycotoxins from
    Wang L; Yan Z; Zhou H; Fan Y; Wang C; Zhang J; Liao Y; Wu A
    Toxins (Basel); 2021 Sep; 13(9):. PubMed ID: 34564663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between Fusarium spp. diversity and mycotoxin contents of mature grains in southern Belgium.
    Hellin P; Dedeurwaerder G; Duvivier M; Scauflaire J; Huybrechts B; Callebaut A; Munaut F; Legrève A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1228-40. PubMed ID: 27181458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina.
    Castañares E; Albuquerque DR; Dinolfo MI; Pinto VF; Patriarca A; Stenglein SA
    Int J Food Microbiol; 2014 Jun; 179():57-63. PubMed ID: 24727383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of Mycotoxin Accumulation and Transcriptomes of Different Wheat Cultivars during
    Li K; Yu D; Yan Z; Liu N; Fan Y; Wang C; Wu A
    Toxins (Basel); 2022 Jul; 14(7):. PubMed ID: 35878220
    [No Abstract]   [Full Text] [Related]  

  • 14. Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis.
    de Kuppler AL; Steiner U; Sulyok M; Krska R; Oerke EC
    Int J Food Microbiol; 2011 Nov; 151(1):78-86. PubMed ID: 21889226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil.
    Astolfi P; dos Santos J; Schneider L; Gomes LB; Silva CN; Tessmann DJ; Del Ponte EM
    Int J Food Microbiol; 2011 Aug; 148(3):197-201. PubMed ID: 21665312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Nivalenol-Producing
    Jang JY; Baek SG; Choi JH; Kim S; Kim J; Kim DW; Yun SH; Lee T
    Plant Pathol J; 2019 Dec; 35(6):543-552. PubMed ID: 31832035
    [No Abstract]   [Full Text] [Related]  

  • 17. Contamination of Wheat, Barley, and Maize Seeds with Toxigenic Fusarium Species and Their Mycotoxins in Tunisia.
    Jedidi I; Mateo EM; Marín P; Jiménez M; Said S; González-Jaén MT
    J AOAC Int; 2021 Aug; 104(4):959-967. PubMed ID: 33576795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional and field-specific differences in Fusarium species and mycotoxins associated with blighted North Carolina wheat.
    Cowger C; Ward TJ; Nilsson K; Arellano C; McCormick SP; Busman M
    Int J Food Microbiol; 2020 Jun; 323():108594. PubMed ID: 32229393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol.
    Moretti A; Panzarini G; Somma S; Campagna C; Ravaglia S; Logrieco AF; Solfrizzo M
    Toxins (Basel); 2014 Apr; 6(4):1308-24. PubMed ID: 24727554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusarium graminearum Chemotype-Spring Wheat Genotype Interaction Effects in Type I and II Resistance Response Assays.
    Serajazari M; Hudson K; Kaviani M; Navabi A
    Phytopathology; 2019 Apr; 109(4):643-649. PubMed ID: 30451634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.