These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 3600640)

  • 41. Absence of substantial bending in Xenopus laevis transcription factor IIIA-DNA complexes.
    Zwieb C; Brown RS
    Nucleic Acids Res; 1990 Feb; 18(3):583-7. PubMed ID: 2155404
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nucleosomes inhibit both transcriptional initiation and elongation by RNA polymerase III in vitro.
    Morse RH
    EMBO J; 1989 Aug; 8(8):2343-51. PubMed ID: 2792088
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple nucleosome positioning with unique rotational setting for the Saccharomyces cerevisiae 5S rRNA gene in vitro and in vivo.
    Buttinelli M; Di Mauro E; Negri R
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9315-9. PubMed ID: 8415699
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of 5S RNA transcription in vitro by nucleosome cores with low or high levels of histone acetylation.
    Roberge M; O'Neill TE; Bradbury EM
    FEBS Lett; 1991 Aug; 288(1-2):215-8. PubMed ID: 1879554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA damage induced by bleomycin, neocarzinostatin, and melphalan in a precisely positioned nucleosome. Asymmetry in protection at the periphery of nucleosome-bound DNA.
    Smith BL; Bauer GB; Povirk LF
    J Biol Chem; 1994 Dec; 269(48):30587-94. PubMed ID: 7527033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5 S RNA gene.
    Liao XB; Clemens KR; Tennant L; Wright PE; Gottesfeld JM
    J Mol Biol; 1992 Feb; 223(4):857-71. PubMed ID: 1538401
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assembly of transcriptionally active chromatin in Xenopus oocytes requires specific DNA binding factors.
    Gargiulo G; Razvi F; Worcel A
    Cell; 1984 Sep; 38(2):511-21. PubMed ID: 6540626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A positive role for histone acetylation in transcription factor access to nucleosomal DNA.
    Lee DY; Hayes JJ; Pruss D; Wolffe AP
    Cell; 1993 Jan; 72(1):73-84. PubMed ID: 8422685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin.
    Felts SJ; Weil PA; Chalkley R
    Mol Cell Biol; 1990 May; 10(5):2390-401. PubMed ID: 2183033
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functionally relevant histone-DNA interactions extend beyond the classically defined nucleosome core region.
    Thiriet C; Hayes JJ
    J Biol Chem; 1998 Aug; 273(33):21352-8. PubMed ID: 9694896
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Both the 5S rRNA gene and the AT-rich flanks of xenopus laevis oocyte-type 5S rDNA repeat are required for histone H1-dependent repression of transcription of pol III-type genes in in vitro reconstituted chromatin.
    Tomaszewski R; Mogielnicka E; Jerzmanowski A
    Nucleic Acids Res; 1998 Dec; 26(24):5596-601. PubMed ID: 9837988
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A difference in the importance of bulged nucleotides and their parent base pairs in the binding of transcription factor IIIA to Xenopus 5S RNA and 5S RNA genes.
    Baudin F; Romaniuk PJ
    Nucleic Acids Res; 1989 Mar; 17(5):2043-56. PubMed ID: 2494645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains.
    Hansen PK; Christensen JH; Nyborg J; Lillelund O; Thøgersen HC
    J Mol Biol; 1993 Sep; 233(2):191-202. PubMed ID: 8377197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of sequence differences between somatic and oocyte 5S RNA genes on transcriptional efficiency in an oocyte S150 extract.
    Reynolds WF
    Mol Cell Biol; 1988 Nov; 8(11):5056-8. PubMed ID: 3211136
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene.
    Hanas JS; Bogenhagen DF; Wu CW
    Proc Natl Acad Sci U S A; 1983 Apr; 80(8):2142-5. PubMed ID: 6572967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA damage can alter the stability of nucleosomes: effects are dependent on damage type.
    Mann DB; Springer DL; Smerdon MJ
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2215-20. PubMed ID: 9122174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Internal deletion mutants of Xenopus transcription factor IIIA.
    Hanas JS; Littell RM; Gaskins CJ; Zebrowski R
    Nucleic Acids Res; 1989 Dec; 17(23):9861-70. PubMed ID: 2690011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of nucleosome core particles containing histone proteins made in bacteria.
    Luger K; Rechsteiner TJ; Flaus AJ; Waye MM; Richmond TJ
    J Mol Biol; 1997 Sep; 272(3):301-11. PubMed ID: 9325091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human transcription factor TFIIIC2 specifically interacts with a unique sequence in the Xenopus laevis 5S rRNA gene.
    Fradkin LG; Yoshinaga SK; Berk AJ; Dasgupta A
    Mol Cell Biol; 1989 Nov; 9(11):4941-50. PubMed ID: 2601702
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcription factor IIIA induced bending of the Xenopus somatic 5S gene promoter.
    Schroth GP; Cook GR; Bradbury EM; Gottesfeld JM
    Nature; 1989 Aug; 340(6233):487-8. PubMed ID: 2755511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.