These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 36006428)
1. Utility of pre-treatment FDG PET/CT-derived machine learning models for outcome prediction in classical Hodgkin lymphoma. Frood R; Clark M; Burton C; Tsoumpas C; Frangi AF; Gleeson F; Patel C; Scarsbrook A Eur Radiol; 2022 Oct; 32(10):7237-7247. PubMed ID: 36006428 [TBL] [Abstract][Full Text] [Related]
2. Radiomics based on Ou X; Zhang J; Wang J; Pang F; Wang Y; Wei X; Ma X Cancer Med; 2020 Jan; 9(2):496-506. PubMed ID: 31769230 [TBL] [Abstract][Full Text] [Related]
3. The Usefulness of Machine Learning-Based Evaluation of Clinical and Pretreatment [ Nakajo M; Kawaji K; Nagano H; Jinguji M; Mukai A; Kawabata H; Tani A; Hirahara D; Yamashita M; Yoshiura T Mol Imaging Biol; 2023 Apr; 25(2):303-313. PubMed ID: 35864282 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based FDG PET-CT radiomics for outcome prediction in larynx and hypopharynx squamous cell carcinoma. Zhong J; Frood R; Brown P; Nelstrop H; Prestwich R; McDermott G; Currie S; Vaidyanathan S; Scarsbrook AF Clin Radiol; 2021 Jan; 76(1):78.e9-78.e17. PubMed ID: 33036778 [TBL] [Abstract][Full Text] [Related]
5. The Impact of Semiautomatic Segmentation Methods on Metabolic Tumor Volume, Intensity, and Dissemination Radiomics in Driessen J; Zwezerijnen GJC; Schöder H; Drees EEE; Kersten MJ; Moskowitz AJ; Moskowitz CH; Eertink JJ; Vet HCW; Hoekstra OS; Zijlstra JM; Boellaard R J Nucl Med; 2022 Sep; 63(9):1424-1430. PubMed ID: 34992152 [TBL] [Abstract][Full Text] [Related]
6. Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [ Nakajo M; Jinguji M; Tani A; Kikuno H; Hirahara D; Togami S; Kobayashi H; Yoshiura T Mol Imaging Biol; 2021 Oct; 23(5):756-765. PubMed ID: 33763816 [TBL] [Abstract][Full Text] [Related]
7. Training and external validation of pre-treatment FDG PET-CT-based models for outcome prediction in anal squamous cell carcinoma. Frood R; Mercer J; Brown P; Appelt A; Mistry H; Kochhar R; Scarsbrook A Eur Radiol; 2024 May; 34(5):3194-3204. PubMed ID: 37924344 [TBL] [Abstract][Full Text] [Related]
8. [ Ferreira M; Lovinfosse P; Hermesse J; Decuypere M; Rousseau C; Lucia F; Schick U; Reinhold C; Robin P; Hatt M; Visvikis D; Bernard C; Leijenaar RTH; Kridelka F; Lambin P; Meyer PE; Hustinx R Eur J Nucl Med Mol Imaging; 2021 Oct; 48(11):3432-3443. PubMed ID: 33772334 [TBL] [Abstract][Full Text] [Related]
9. Machine learning approach using Nakajo M; Hirahara D; Jinguji M; Ojima S; Hirahara M; Tani A; Takumi K; Kamimura K; Ohishi M; Yoshiura T Jpn J Radiol; 2024 Jul; 42(7):744-752. PubMed ID: 38491333 [TBL] [Abstract][Full Text] [Related]
10. Machine learning based evaluation of clinical and pretreatment Nakajo M; Jinguji M; Tani A; Yano E; Hoo CK; Hirahara D; Togami S; Kobayashi H; Yoshiura T Abdom Radiol (NY); 2022 Feb; 47(2):838-847. PubMed ID: 34821963 [TBL] [Abstract][Full Text] [Related]
11. Preliminary study on the ability of the machine learning models based on Wang J; Zhou Y; Zhou J; Liu H; Li X Eur J Radiol; 2024 Jul; 176():111531. PubMed ID: 38820949 [TBL] [Abstract][Full Text] [Related]
12. Hodgkin disease: diagnostic value of FDG PET/CT after first-line therapy--is biopsy of FDG-avid lesions still needed? Schaefer NG; Taverna C; Strobel K; Wastl C; Kurrer M; Hany TF Radiology; 2007 Jul; 244(1):257-62. PubMed ID: 17581905 [TBL] [Abstract][Full Text] [Related]
13. Predicting T-Cell Lymphoma in Children From Yang T; Liu D; Zhang Z; Sa R; Guan F J Imaging Inform Med; 2024 Jun; 37(3):952-964. PubMed ID: 38321311 [TBL] [Abstract][Full Text] [Related]
14. Value of [ Li K; Sun H; Lu Z; Xin J; Zhang L; Guo Y; Guo Q Eur J Radiol; 2018 Sep; 106():160-166. PubMed ID: 30150039 [TBL] [Abstract][Full Text] [Related]
15. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Peng L; Hong X; Yuan Q; Lu L; Wang Q; Chen W Ann Nucl Med; 2021 Apr; 35(4):458-468. PubMed ID: 33543393 [TBL] [Abstract][Full Text] [Related]
16. Diagnostic performance of 18F-2-fluoro-2-deoxy-D-glucose PET/computerized tomography in identifying bone marrow infiltration in new patients with diffuse large B-cell lymphoma and Hodgkin lymphoma. Kandeel AA; Hussein M; Zidan L; Younis J; Edesa W; Alsayed Y Nucl Med Commun; 2020 Mar; 41(3):269-279. PubMed ID: 31895758 [TBL] [Abstract][Full Text] [Related]
17. The value of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography for staging of primary extranodal head and neck lymphomas. Schrepfer T; Haerle SK; Strobel K; Schaefer N; Hälg RA; Huber GF Laryngoscope; 2010 May; 120(5):937-44. PubMed ID: 20422687 [TBL] [Abstract][Full Text] [Related]
18. Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [ de Jesus FM; Yin Y; Mantzorou-Kyriaki E; Kahle XU; de Haas RJ; Yakar D; Glaudemans AWJM; Noordzij W; Kwee TC; Nijland M Eur J Nucl Med Mol Imaging; 2022 Apr; 49(5):1535-1543. PubMed ID: 34850248 [TBL] [Abstract][Full Text] [Related]