BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36006430)

  • 1. Super-resolution application of generative adversarial network on brain time-of-flight MR angiography: image quality and diagnostic utility evaluation.
    Wicaksono KP; Fujimoto K; Fushimi Y; Sakata A; Okuchi S; Hinoda T; Nakajima S; Yamao Y; Yoshida K; Miyake KK; Numamoto H; Saga T; Nakamoto Y
    Eur Radiol; 2023 Feb; 33(2):936-946. PubMed ID: 36006430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Time of Flight Magnetic Resonance Angiography Generation Model Based on Cycle-Consistent Generative Adversarial Network Using PETRA-MRA in the Patients With Treated Intracranial Aneurysm.
    You SH; Cho Y; Kim B; Yang KS; Kim BK; Park SE
    J Magn Reson Imaging; 2022 Nov; 56(5):1513-1528. PubMed ID: 35142407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.
    Deng X; Zhang Z; Zhang Y; Zhang D; Wang R; Ye X; Xu L; Wang B; Wang K; Zhao J
    J Neurosurg; 2016 Jun; 124(6):1716-25. PubMed ID: 26544772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Time-of-Flight Magnetic Resonance Angiography with Sparse Undersampling and Iterative Reconstruction for the Evaluation of Intracranial Arteries.
    Tang H; Hu N; Yuan Y; Xia C; Liu X; Zuo P; Stalder AF; Schmidt M; Zhou X; Song B; Sun J
    Korean J Radiol; 2019 Feb; 20(2):265-274. PubMed ID: 30672166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion artifact removal in coronary CT angiography based on generative adversarial networks.
    Zhang L; Jiang B; Chen Q; Wang L; Zhao K; Zhang Y; Vliegenthart R; Xie X
    Eur Radiol; 2023 Jan; 33(1):43-53. PubMed ID: 35829786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Black-Blood Luminal Angiography Derived from High-Resolution MR Vessel Wall Imaging in Detecting MCA Stenosis: A Preliminary Study.
    Bai X; Lv P; Liu K; Li Q; Ding J; Qu J; Lin J
    AJNR Am J Neuroradiol; 2018 Oct; 39(10):1827-1832. PubMed ID: 30139751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel imaging in time-of-flight magnetic resonance angiography using deep multistream convolutional neural networks.
    Jun Y; Eo T; Shin H; Kim T; Lee HJ; Hwang D
    Magn Reson Med; 2019 Jun; 81(6):3840-3853. PubMed ID: 30666723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T.
    Willinek WA; Gieseke J; von Falkenhausen M; Born M; Hadizadeh D; Manka C; Textor HJ; Schild HH; Kuhl CK
    Rofo; 2004 Jan; 176(1):21-6. PubMed ID: 14712403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study.
    Li Y; Zhang H; Sun Y; Fan Q; Wang L; Ji C; HuiGu ; Chen B; Zhao S; Wang D; Yu P; Li J; Yang S; Zhang C; Wang X
    Int J Med Inform; 2024 Aug; 188():105487. PubMed ID: 38761459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography.
    Zhang X; Cao YZ; Mu XH; Sun Y; Schmidt M; Forman C; Speier P; Lu SS; Hong XN
    Eur Radiol; 2020 Jun; 30(6):3059-3065. PubMed ID: 32064562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Usefulness of Silent MRA for Evaluation of Aneurysm after Stent-Assisted Coil Embolization.
    Kim YN; Choi JW; Lim YC; Song J; Park JH; Jung WS
    Korean J Radiol; 2022 Feb; 23(2):246-255. PubMed ID: 35029075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials.
    Xia Y; Ravikumar N; Lassila T; Frangi AF
    Med Image Anal; 2023 Jul; 87():102814. PubMed ID: 37196537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of 4D time-resolved MRA with keyhole and 3D time-of-flight MRA at 3.0 T for the evaluation of cerebral aneurysms.
    Wu Q; Li MH
    BMC Neurol; 2012 Jul; 12():50. PubMed ID: 22784396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategically acquired gradient echo (STAGE)-derived MR angiography might be a superior alternative method to time-of-flight MR angiography in visualization of leptomeningeal collaterals.
    Tang R; Zhang Q; Chen Y; Liu S; Haacke EM; Chang BG; Xia S
    Eur Radiol; 2020 Sep; 30(9):5110-5119. PubMed ID: 32307565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.