BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36006502)

  • 1. Modeling of MT. P495, an mRNA-based vaccine against the phosphate-binding protein PstS1 of Mycobacterium tuberculosis.
    Shahrear S; Islam ABMMK
    Mol Divers; 2023 Aug; 27(4):1613-1632. PubMed ID: 36006502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology.
    Bibi S; Ullah I; Zhu B; Adnan M; Liaqat R; Kong WB; Niu S
    Sci Rep; 2021 Jan; 11(1):1249. PubMed ID: 33441913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach.
    Khan NT; Zinnia MA; Islam ABMMK
    J Biomol Struct Dyn; 2023 Mar; 41(5):1617-1638. PubMed ID: 34994279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a peptide-based vaccine from late stage specific immunogenic cross-reactive antigens of PE/PPE proteins of Mycobacterium tuberculosis.
    Medha ; Priyanka ; Sharma S; Sharma M
    Eur J Pharm Sci; 2022 Jan; 168():106051. PubMed ID: 34744006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of peptide vaccine candidate using highly antigenic PE-PGRS family proteins to stimulate the host immune response against
    Kumar A; Sharma P; Arun A; Meena LS
    J Biomol Struct Dyn; 2023 May; 41(8):3382-3404. PubMed ID: 35293852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and immunogenicity of a T cell epitope-based subunit vaccine candidate against Mycobacterium tuberculosis.
    Fan X; Li X; Wan K; Zhao X; Deng Y; Chen Z; Luan X; Lu S; Liu H
    Vaccine; 2021 Nov; 39(47):6860-6865. PubMed ID: 34702619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel In Silico mRNA vaccine design exploiting proteins of M. tuberculosis that modulates host immune responses by inducing epigenetic modifications.
    Al Tbeishat H
    Sci Rep; 2022 Mar; 12(1):4645. PubMed ID: 35301360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive approach to developing a multi-epitope vaccine against
    Jiang F; Han Y; Liu Y; Xue Y; Cheng P; Xiao L; Gong W
    Front Immunol; 2023; 14():1280299. PubMed ID: 38022558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing of a Chimeric Vaccine Using EIS (Rv2416c) Protein Against Mycobacterium tuberculosis H37Rv: an Immunoinformatics Approach.
    Logesh R; Lavanya V; Jamal S; Ahmed N
    Appl Biochem Biotechnol; 2022 Jan; 194(1):187-214. PubMed ID: 34817805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoinformatics guided modeling of CCHF_GN728, an mRNA-based universal vaccine against Crimean-Congo hemorrhagic fever virus.
    Shahrear S; Islam ABMMK
    Comput Biol Med; 2022 Jan; 140():105098. PubMed ID: 34875407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational discovery and ex-vivo validation study of novel antigenic vaccine candidates against tuberculosis.
    Arega AM; Pattanaik KP; Nayak S; Mahapatra RK
    Acta Trop; 2021 May; 217():105870. PubMed ID: 33636152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A multi-stage and multi-epitope vaccine against Mycobacterium tuberculosis based on an immunoinformatics approach].
    Ning Y; Cai Y; Liu X; Gu C; Meng X; Qiao J
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2023 Jun; 39(6):494-500. PubMed ID: 37340917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico design of Mycobacterium tuberculosis epitope ensemble vaccines.
    Shah P; Mistry J; Reche PA; Gatherer D; Flower DR
    Mol Immunol; 2018 May; 97():56-62. PubMed ID: 29567319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiple T cell epitope comprising DNA vaccine boosts the protective efficacy of Bacillus Calmette-GuĂ©rin (BCG) against Mycobacterium tuberculosis.
    Maurya SK; Aqdas M; Das DK; Singh S; Nadeem S; Kaur G; Agrewala JN
    BMC Infect Dis; 2020 Sep; 20(1):677. PubMed ID: 32942991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoinformatics analysis of antigenic epitopes and designing of a multi-epitope peptide vaccine from putative nitro-reductases of Mycobacterium tuberculosis DosR.
    Shiraz M; Lata S; Kumar P; Shankar UN; Akif M
    Infect Genet Evol; 2021 Oct; 94():105017. PubMed ID: 34332157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse vaccinology approach to design a multi-epitope vaccine construct based on the Mycobacterium tuberculosis biomarker PE_PGRS17.
    Moodley A; Fatoba A; Okpeku M; Emmanuel Chiliza T; Blessing Cedric Simelane M; Pooe OJ
    Immunol Res; 2022 Aug; 70(4):501-517. PubMed ID: 35554858
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Andongma BT; Huang Y; Chen F; Tang Q; Yang M; Chou SH; Li X; He J
    Comput Struct Biotechnol J; 2023; 21():991-1004. PubMed ID: 36733703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting promiscuous antigenic T cell epitopes of Mycobacterium tuberculosis mymA operon proteins binding to MHC Class I and Class II molecules.
    Saraav I; Pandey K; Sharma M; Singh S; Dutta P; Bhardwaj A; Sharma S
    Infect Genet Evol; 2016 Oct; 44():182-189. PubMed ID: 27389362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural and trained innate immunity against Mycobacterium tuberculosis.
    Ferluga J; Yasmin H; Al-Ahdal MN; Bhakta S; Kishore U
    Immunobiology; 2020 May; 225(3):151951. PubMed ID: 32423788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future Path Toward TB Vaccine Development: Boosting BCG or Re-educating by a New Subunit Vaccine.
    Gupta N; Garg S; Vedi S; Kunimoto DY; Kumar R; Agrawal B
    Front Immunol; 2018; 9():2371. PubMed ID: 30386336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.