BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36006502)

  • 21. The role of immunoinformatics in the development of T-cell peptide-based vaccines against
    Ortega-Tirado D; Arvizu-Flores AA; Velazquez C; Garibay-Escobar A
    Expert Rev Vaccines; 2020 Sep; 19(9):831-841. PubMed ID: 32945209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovering peptides and computational investigations of a multiepitope vaccine target
    Nguyen TL; Kim H
    Synth Syst Biotechnol; 2024 Sep; 9(3):391-405. PubMed ID: 38585591
    [No Abstract]   [Full Text] [Related]  

  • 23. Epitope-driven TB vaccine development: a streamlined approach using immuno-informatics, ELISpot assays, and HLA transgenic mice.
    McMurry JA; Kimball S; Lee JH; Rivera D; Martin W; Weiner DB; Kutzler M; Sherman DR; Kornfeld H; De Groot AS
    Curr Mol Med; 2007 Jun; 7(4):351-68. PubMed ID: 17584075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mining the Mycobacterium tuberculosis proteome for identification of potential T-cell epitope based vaccine candidates.
    Madan R; Pandit K; Bhati L; Kumar H; Kumari N; Singh S
    Microb Pathog; 2021 Aug; 157():104996. PubMed ID: 34044044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An immunoinformatics approach to design a multi-epitope vaccine against Mycobacterium tuberculosis exploiting secreted exosome proteins.
    Sharma R; Rajput VS; Jamal S; Grover A; Grover S
    Sci Rep; 2021 Jul; 11(1):13836. PubMed ID: 34226593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunoinformatic-Based Multi-Epitope Vaccine Design for Co-Infection of
    Peng C; Tang F; Wang J; Cheng P; Wang L; Gong W
    J Pers Med; 2023 Jan; 13(1):. PubMed ID: 36675777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel lipopeptides of ESAT-6 induce strong protective immunity against Mycobacterium tuberculosis: Routes of immunization and TLR agonists critically impact vaccine's efficacy.
    Gupta N; Vedi S; Kunimoto DY; Agrawal B; Kumar R
    Vaccine; 2016 Nov; 34(46):5677-5688. PubMed ID: 27693020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight Into Novel Anti-tuberculosis Vaccines by Using Immunoinformatics Approaches.
    Khan Z; Ualiyeva D; Amissah OB; Sapkota S; Hameed HMA; Zhang T
    Front Microbiol; 2022; 13():866873. PubMed ID: 35722321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunodominant PstS1 antigen of mycobacterium tuberculosis is a potent biological response modifier for the treatment of bladder cancer.
    Sänger C; Busche A; Bentien G; Spallek R; Jonas F; Böhle A; Singh M; Brandau S
    BMC Cancer; 2004 Nov; 4():86. PubMed ID: 15566565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational approaches in epitope design using DNA binding proteins as vaccine candidate in Mycobacterium tuberculosis.
    Sunita ; Singhvi N; Singh Y; Shukla P
    Infect Genet Evol; 2020 Sep; 83():104357. PubMed ID: 32438080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of HLA-A*11:01-restricted Mycobacterium tuberculosis CD8(+) T cell epitopes.
    Liu SD; Su J; Zhang SM; Dong HP; Wang H; Luo W; Wen Q; He JC; Yang XF; Ma L
    J Cell Mol Med; 2016 Sep; 20(9):1718-28. PubMed ID: 27072810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A lipidated bi-epitope vaccine comprising of MHC-I and MHC-II binder peptides elicits protective CD4 T cell and CD8 T cell immunity against Mycobacterium tuberculosis.
    Rai PK; Chodisetti SB; Maurya SK; Nadeem S; Zeng W; Janmeja AK; Jackson DC; Agrewala JN
    J Transl Med; 2018 Oct; 16(1):279. PubMed ID: 30305097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New alternative vaccine component against mycobacterium tuberculosis--heat shock protein 16.3 or its T-cell epitope.
    Shi C; Zhang H; Zhang T; Wang X; Bai B; Zhao Y; Zhang C; Xu Z
    Scand J Immunol; 2009 Nov; 70(5):465-74. PubMed ID: 19874551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of multi-epitope based subunit vaccine against
    Kumari R S; Sethi G; Krishna R
    J Biomol Struct Dyn; 2023 Oct; ():1-20. PubMed ID: 37880982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of potential candidate vaccines against
    Ishwarlall TZ; Adeleke VT; Maharaj L; Okpeku M; Adeniyi AA; Adeleke MA
    Front Immunol; 2022; 13():1023558. PubMed ID: 36426350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel multi-component protein vaccine ECP001 containing a protein polypeptide antigen nPstS1 riching in T-cell epitopes showed good immunogenicity and protection in mice.
    Yu J; Fan X; Luan X; Wang R; Cao B; Qian C; Li G; Li M; Zhao X; Liu H; Wan K; Yuan X
    Front Immunol; 2023; 14():1138818. PubMed ID: 37153610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and evaluation of immunogenic MHC-I and MHC-II binding peptides from Mycobacterium tuberculosis.
    Jagadeb M; Pattanaik KP; Rath SN; Sonawane A
    Comput Biol Med; 2021 Mar; 130():104203. PubMed ID: 33450502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The M. tuberculosis phosphate-binding lipoproteins PstS1 and PstS3 induce Th1 and Th17 responses that are not associated with protection against M. tuberculosis infection.
    Palma C; Spallek R; Piccaro G; Pardini M; Jonas F; Oehlmann W; Singh M; Cassone A
    Clin Dev Immunol; 2011; 2011():690328. PubMed ID: 21603219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lung Epithelial Signaling Mediates Early Vaccine-Induced CD4
    Das S; Marin ND; Esaulova E; Ahmed M; Swain A; Rosa BA; Mitreva M; Rangel-Moreno J; Netea MG; Barreiro LB; Divangahi M; Artyomov MN; Kaushal D; Khader SA
    mBio; 2021 Aug; 12(4):e0146821. PubMed ID: 34253059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.