BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36006832)

  • 1. Characterization of 'QTL-hotspot' introgression lines reveals physiological mechanisms and candidate genes associated with drought adaptation in chickpea.
    Barmukh R; Roorkiwal M; Dixit GP; Bajaj P; Kholova J; Smith MR; Chitikineni A; Bharadwaj C; Sreeman SM; Rathore A; Tripathi S; Yasin M; Vijayakumar AG; Rao Sagurthi S; Siddique KHM; Varshney RK
    J Exp Bot; 2022 Dec; 73(22):7255-7272. PubMed ID: 36006832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome.
    Sivasakthi K; Thudi M; Tharanya M; Kale SM; Kholová J; Halime MH; Jaganathan D; Baddam R; Thirunalasundari T; Gaur PM; Varshney RK; Vadez V
    BMC Plant Biol; 2018 Feb; 18(1):29. PubMed ID: 29409451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic variation in CaTIFY4b contributes to drought adaptation in chickpea.
    Barmukh R; Roorkiwal M; Garg V; Khan AW; German L; Jaganathan D; Chitikineni A; Kholova J; Kudapa H; Sivasakthi K; Samineni S; Kale SM; Gaur PM; Sagurthi SR; Benitez-Alfonso Y; Varshney RK
    Plant Biotechnol J; 2022 Sep; 20(9):1701-1715. PubMed ID: 35534989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.).
    Varshney RK; Thudi M; Nayak SN; Gaur PM; Kashiwagi J; Krishnamurthy L; Jaganathan D; Koppolu J; Bohra A; Tripathi S; Rathore A; Jukanti AK; Jayalakshmi V; Vemula A; Singh SJ; Yasin M; Sheshshayee MS; Viswanatha KP
    Theor Appl Genet; 2014 Feb; 127(2):445-62. PubMed ID: 24326458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introgression of "QTL-hotspot" region enhances drought tolerance and grain yield in three elite chickpea cultivars.
    Bharadwaj C; Tripathi S; Soren KR; Thudi M; Singh RK; Sheoran S; Roorkiwal M; Patil BS; Chitikineni A; Palakurthi R; Vemula A; Rathore A; Kumar Y; Chaturvedi SK; Mondal B; Shanmugavadivel PS; Srivastava AK; Dixit GP; Singh NP; Varshney RK
    Plant Genome; 2021 Mar; 14(1):e20076. PubMed ID: 33480153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (Cicer arietinum L.).
    Kale SM; Jaganathan D; Ruperao P; Chen C; Punna R; Kudapa H; Thudi M; Roorkiwal M; Katta MA; Doddamani D; Garg V; Kishor PBK; Gaur PM; Nguyen HT; Batley J; Edwards D; Sutton T; Varshney RK
    Sci Rep; 2015 Oct; 5():15296. PubMed ID: 26478518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic mapping of QTLs for drought tolerance in chickpea (
    Kushwah A; Bhatia D; Barmukh R; Singh I; Singh G; Bindra S; Vij S; Chellapilla B; Pratap A; Roorkiwal M; Kumar S; Varshney RK; Singh S
    Front Genet; 2022; 13():953898. PubMed ID: 36061197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.).
    Yadava YK; Chaudhary P; Yadav S; Rizvi AH; Kumar T; Srivastava R; Soren KR; Bharadwaj C; Srinivasan R; Singh NK; Jain PK
    Sci Rep; 2023 Oct; 13(1):17623. PubMed ID: 37848483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea.
    Thakro V; Malik N; Basu U; Srivastava R; Narnoliya L; Daware A; Varshney N; Mohanty JK; Bajaj D; Dwivedi V; Tripathi S; Jha UC; Dixit GP; Singh AK; Tyagi AK; Upadhyaya HD; Parida SK
    Plant Physiol; 2023 Mar; 191(3):1884-1912. PubMed ID: 36477336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genetics of vigour-related traits in chickpea (Cicer arietinum L.): insights from genomic data.
    Nguyen DT; Hayes JE; Atieno J; Li Y; Baumann U; Pattison A; Bramley H; Hobson K; Roorkiwal M; Varshney RK; Colmer TD; Sutton T
    Theor Appl Genet; 2022 Jan; 135(1):107-124. PubMed ID: 34643761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea.
    Saxena MS; Bajaj D; Das S; Kujur A; Kumar V; Singh M; Bansal KC; Tyagi AK; Parida SK
    DNA Res; 2014 Dec; 21(6):695-710. PubMed ID: 25335477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea.
    Das S; Upadhyaya HD; Bajaj D; Kujur A; Badoni S; Laxmi ; Kumar V; Tripathi S; Gowda CL; Sharma S; Singh S; Tyagi AK; Parida SK
    DNA Res; 2015 Jun; 22(3):193-203. PubMed ID: 25922536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea.
    Singh VK; Khan AW; Jaganathan D; Thudi M; Roorkiwal M; Takagi H; Garg V; Kumar V; Chitikineni A; Gaur PM; Sutton T; Terauchi R; Varshney RK
    Plant Biotechnol J; 2016 Nov; 14(11):2110-2119. PubMed ID: 27107184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotyping-by-sequencing based intra-specific genetic map refines a ''QTL-hotspot" region for drought tolerance in chickpea.
    Jaganathan D; Thudi M; Kale S; Azam S; Roorkiwal M; Gaur PM; Kishor PB; Nguyen H; Sutton T; Varshney RK
    Mol Genet Genomics; 2015 Apr; 290(2):559-71. PubMed ID: 25344290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-trait analysis of domestication genes in Cicer arietinum - Cicer reticulatum hybrids with a multidimensional approach: Modeling wide crosses for crop improvement.
    Shin MG; Bulyntsev SV; Chang PL; Korbu LB; Carrasquila-Garcia N; Vishnyakova MA; Samsonova MG; Cook DR; Nuzhdin SV
    Plant Sci; 2019 Aug; 285():122-131. PubMed ID: 31203876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea.
    Srivastava R; Bajaj D; Sayal YK; Meher PK; Upadhyaya HD; Kumar R; Tripathi S; Bharadwaj C; Rao AR; Parida SK
    Plant Sci; 2016 Nov; 252():374-387. PubMed ID: 27717474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide SNP Discovery and Mapping QTLs for Seed Iron and Zinc Concentrations in Chickpea (
    Sab S; Lokesha R; Mannur DM; Somasekhar ; Jadhav K; Mallikarjuna BP; C L; Yeri S; Valluri V; Bajaj P; Chitikineni A; Vemula A; Rathore A; Varshney RK; Shankergoud I; Thudi M
    Front Nutr; 2020; 7():559120. PubMed ID: 33154975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of the markers linked with drought tolerance related traits for use in MAS programme in chickpea.
    Chahande RV; Kulwal PL; Mhase LB; Jadhav AS
    J Genet; 2021; 100():. PubMed ID: 34706998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea.
    Upadhyaya HD; Bajaj D; Das S; Saxena MS; Badoni S; Kumar V; Tripathi S; Gowda CL; Sharma S; Tyagi AK; Parida SK
    Plant Mol Biol; 2015 Nov; 89(4-5):403-20. PubMed ID: 26394865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea.
    Basu U; Bajaj D; Sharma A; Malik N; Daware A; Narnoliya L; Thakro V; Upadhyaya HD; Kumar R; Tripathi S; Bharadwaj C; Tyagi AK; Parida SK
    Plant Cell Environ; 2019 Jan; 42(1):158-173. PubMed ID: 29676051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.