These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36007144)
1. A Machine-Learning-Enhanced Simultaneous and Multimodal Sensor Based on Moist-Electric Powered Graphene Oxide. Yang C; Wang H; Yang J; Yao H; He T; Bai J; Guang T; Cheng H; Yan J; Qu L Adv Mater; 2022 Oct; 34(41):e2205249. PubMed ID: 36007144 [TBL] [Abstract][Full Text] [Related]
2. Bioinspired Self-Powered Piezoresistive Sensors for Simultaneous Monitoring of Human Health and Outdoor UV Light Intensity. Yu Z; Xu J; Gong H; Li Y; Li L; Wei Q; Tang D ACS Appl Mater Interfaces; 2022 Feb; 14(4):5101-5111. PubMed ID: 35050572 [TBL] [Abstract][Full Text] [Related]
3. Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization. Shin YE; Park YJ; Ghosh SK; Lee Y; Park J; Ko H Adv Sci (Weinh); 2022 Mar; 9(9):e2105423. PubMed ID: 35072354 [TBL] [Abstract][Full Text] [Related]
4. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. Yang Z; Zhu Z; Chen Z; Liu M; Zhao B; Liu Y; Cheng Z; Wang S; Yang W; Yu T Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960515 [TBL] [Abstract][Full Text] [Related]
5. A Machine Learning-Combined Flexible Sensor for Tactile Detection and Voice Recognition. Xie J; Zhao Y; Zhu D; Yan J; Li J; Qiao M; He G; Deng S ACS Appl Mater Interfaces; 2023 Mar; 15(9):12551-12559. PubMed ID: 36808950 [TBL] [Abstract][Full Text] [Related]
6. Bioinspired, Self-Powered, and Highly Sensitive Electronic Skin for Sensing Static and Dynamic Pressures. Sun QJ; Zhao XH; Yeung CC; Tian Q; Kong KW; Wu W; Venkatesh S; Li WJ; Roy VAL ACS Appl Mater Interfaces; 2020 Aug; 12(33):37239-37247. PubMed ID: 32814376 [TBL] [Abstract][Full Text] [Related]
7. Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection. Zhang L; Li H; Lai X; Gao T; Zeng X ACS Appl Mater Interfaces; 2020 Sep; 12(39):44360-44370. PubMed ID: 32901483 [TBL] [Abstract][Full Text] [Related]
8. Wearable humidity sensor based on porous graphene network for respiration monitoring. Pang Y; Jian J; Tu T; Yang Z; Ling J; Li Y; Wang X; Qiao Y; Tian H; Yang Y; Ren TL Biosens Bioelectron; 2018 Sep; 116():123-129. PubMed ID: 29879538 [TBL] [Abstract][Full Text] [Related]
9. Self-Powered Piezoionic Strain Sensor toward the Monitoring of Human Activities. Liu Y; Hu Y; Zhao J; Wu G; Tao X; Chen W Small; 2016 Sep; 12(36):5074-5080. PubMed ID: 27150115 [TBL] [Abstract][Full Text] [Related]
10. Humidity-Based Human-Machine Interaction System for Healthcare Applications. Zou S; Tao LQ; Wang G; Zhu C; Peng Z; Sun H; Li Y; Wei Y; Ren TL ACS Appl Mater Interfaces; 2022 Mar; 14(10):12606-12616. PubMed ID: 35230086 [TBL] [Abstract][Full Text] [Related]
11. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin. Qiu J; Guo X; Chu R; Wang S; Zeng W; Qu L; Zhao Y; Yan F; Xing G ACS Appl Mater Interfaces; 2019 Oct; 11(43):40716-40725. PubMed ID: 31596567 [TBL] [Abstract][Full Text] [Related]
12. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring. Jeong YR; Lee G; Park H; Ha JS Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283 [TBL] [Abstract][Full Text] [Related]
13. A Wearable Low-Power Sensing Platform for Environmental and Health Monitoring: The Convergence Project. Saoutieff E; Polichetti T; Jouanet L; Faucon A; Vidal A; Pereira A; Boisseau S; Ernst T; Miglietta ML; Alfano B; Massera E; De Vito S; Bui DHN; Benech P; Vuong TP; Moldovan C; Danlee Y; Walewyns T; Petre S; Flandre D; Ancans A; Greitans M; Ionescu AM Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33807664 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional and Ultrasensitive-Reduced Graphene Oxide and Pen Ink/Polyvinyl Alcohol-Decorated Modal/Spandex Fabric for High-Performance Wearable Sensors. Bi S; Hou L; Dong W; Lu Y ACS Appl Mater Interfaces; 2021 Jan; 13(1):2100-2109. PubMed ID: 33347284 [TBL] [Abstract][Full Text] [Related]
16. Self-Powered, Rapid-Response, and Highly Flexible Humidity Sensors Based on Moisture-Dependent Voltage Generation. Shen D; Xiao M; Xiao Y; Zou G; Hu L; Zhao B; Liu L; Duley WW; Zhou YN ACS Appl Mater Interfaces; 2019 Apr; 11(15):14249-14255. PubMed ID: 30907574 [TBL] [Abstract][Full Text] [Related]
17. Self-Powered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input. Tan P; Han X; Zou Y; Qu X; Xue J; Li T; Wang Y; Luo R; Cui X; Xi Y; Wu L; Xue B; Luo D; Fan Y; Chen X; Li Z; Wang ZL Adv Mater; 2022 May; 34(21):e2200793. PubMed ID: 35344226 [TBL] [Abstract][Full Text] [Related]
18. Bionic Fish-Scale Surface Structures Fabricated via Air/Water Interface for Flexible and Ultrasensitive Pressure Sensors. Wang J; Tenjimbayashi M; Tokura Y; Park JY; Kawase K; Li J; Shiratori S ACS Appl Mater Interfaces; 2018 Sep; 10(36):30689-30697. PubMed ID: 30003780 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics. Lou Z; Li L; Wang L; Shen G Small; 2017 Dec; 13(45):. PubMed ID: 29076297 [TBL] [Abstract][Full Text] [Related]