These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36007285)

  • 21. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion.
    Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L
    Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.
    Wang T; Huang J; Yang Y; Zhang E; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23423-30. PubMed ID: 26448049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators.
    Yew YK; Ng TY; Li H; Lam KY
    Biomed Microdevices; 2007 Aug; 9(4):487-99. PubMed ID: 17520372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges.
    Banerjee H; Suhail M; Ren H
    Biomimetics (Basel); 2018 Jul; 3(3):. PubMed ID: 31105237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures.
    Yuk H; Zhang T; Parada GA; Liu X; Zhao X
    Nat Commun; 2016 Jun; 7():12028. PubMed ID: 27345380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).
    Orthner MP; Lin G; Avula M; Buetefisch S; Magda J; Rieth LW; Solzbacher F
    Sens Actuators B Chem; 2010 Mar; 145(2):807-816. PubMed ID: 23750073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-Dimensional MoO
    Sun Z; Wei C; Liu W; Liu H; Liu J; Hao R; Huang M; He S
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33404-33416. PubMed ID: 34247475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.
    Wang Z; Cong Y; Fu J
    J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel Trends in Hydrogel Development for Biomedical Applications: A Review.
    Sánchez-Cid P; Jiménez-Rosado M; Romero A; Pérez-Puyana V
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatiotemporal Regulation of Hydrogel Actuators by Autocatalytic Reaction Networks.
    Paikar A; Novichkov AI; Hanopolskyi AI; Smaliak VA; Sui X; Kampf N; Skorb EV; Semenov SN
    Adv Mater; 2022 Apr; 34(13):e2106816. PubMed ID: 34910837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors.
    Qin Z; Sun X; Yu Q; Zhang H; Wu X; Yao M; Liu W; Yao F; Li J
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4944-4953. PubMed ID: 31912722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneity Regulation of Bilayer Polysaccharide Hydrogels for Integrating pH- and Humidity-Responsive Actuators and Sensors.
    Zeng W; Jiang C; Wu D
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16097-16108. PubMed ID: 36924131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application.
    Kwon GH; Choi YY; Park JY; Woo DH; Lee KB; Kim JH; Lee SH
    Lab Chip; 2010 Jun; 10(12):1604-10. PubMed ID: 20376390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-doping optimized hydrogel-elastomer micro-actuators for versatile biomimetic motions.
    Pan Y; Lee LH; Yang Z; Hassan SU; Shum HC
    Nanoscale; 2021 Nov; 13(45):18967-18976. PubMed ID: 34730168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell-Laden Multiple-Step and Reversible 4D Hydrogel Actuators to Mimic Dynamic Tissue Morphogenesis.
    Ding A; Jeon O; Tang R; Lee YB; Lee SJ; Alsberg E
    Adv Sci (Weinh); 2021 May; 8(9):2004616. PubMed ID: 33977070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.
    Zhao Y; Zhu ZS; Guan J; Wu SJ
    Acta Biomater; 2021 Apr; 125():57-71. PubMed ID: 33601067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced Graphene Oxide-Containing Smart Hydrogels with Excellent Electro-Response and Mechanical Properties for Soft Actuators.
    Yang C; Liu Z; Chen C; Shi K; Zhang L; Ju XJ; Wang W; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2017 May; 9(18):15758-15767. PubMed ID: 28425695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors.
    Zhang X; Chen J; He J; Bai Y; Zeng H
    J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.