These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3600792)

  • 1. Correlation between the anaesthetic effect of halothane and saturable binding in brain.
    Evers AS; Berkowitz BA; d'Avignon DA
    Nature; 1987 Jul 9-15; 328(6126):157-60. PubMed ID: 3600792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between the anaesthetic effect of halothane and saturable binding in brain.
    Evers AS; Berkowitz BA; d'Avignon DA
    Nature; 1989 Oct; 341(6244):766. PubMed ID: 2797210
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhancement of gamma-aminobutyric acidA receptor function and binding by the volatile anesthetic halothane.
    Longoni B; Demontis GC; Olsen RW
    J Pharmacol Exp Ther; 1993 Jul; 266(1):153-9. PubMed ID: 7687288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation effect of local anaesthetics on synaptosomes: variation with depth of the spin label probe.
    Ondrias K; Stolc S; Benes L; Balgavý P
    Gen Physiol Biophys; 1984 Aug; 3(4):327-37. PubMed ID: 6094301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [31P-NMR analysis of high energy phosphorous compounds (ATP and phosphocreatine) in the living rat brain--effects of halothane anesthesia and a hypoxic condition].
    Yuasa T; Miyatake T; Kuwabara T; Umeda M; Eguchi K
    No To Shinkei; 1983 Nov; 35(11):1089-95. PubMed ID: 6661335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-anaesthetic interaction in phMRI: the case of the psychotomimetic agent phencyclidine.
    Gozzi A; Schwarz A; Crestan V; Bifone A
    Magn Reson Imaging; 2008 Sep; 26(7):999-1006. PubMed ID: 18486387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of halothane distribution in the rat head using 19F NMR technique.
    Wyrwicz AM; Conboy CB
    Magn Reson Med; 1989 Feb; 9(2):219-28. PubMed ID: 2716506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the broad resonance in 31P NMR spectra of excised rat brain.
    Chang YC; Arús C; Bárány M
    Physiol Chem Phys Med NMR; 1985; 17(2):143-54. PubMed ID: 4080824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative autoradiography of halothane binding in rat brain.
    Eckenhoff MF; Eckenhoff RG
    J Pharmacol Exp Ther; 1998 Apr; 285(1):371-6. PubMed ID: 9536033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo 19F-NMR study of halothane distribution in brain.
    Wyrwicz AM; Conboy CB; Nichols BG; Ryback KR; Eisele P
    Biochim Biophys Acta; 1987 Jul; 929(3):271-7. PubMed ID: 3607085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy.
    Heintz D; Kany H; Kalbitzer HR
    Biochemistry; 1996 Oct; 35(39):12686-93. PubMed ID: 8841112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the general anaesthetics, alphaxalone, hexobarbitone and halothane on calcium uptake into rat brain mitochondria in vitro and in vivo.
    Sweetman AJ; Esmail AF
    Methods Find Exp Clin Pharmacol; 1982; 4(5):299-305. PubMed ID: 7121136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of halothane on the natural-abundance 13C NMR spectra of excised rat brain.
    Bárány M; Chang YC; Arús C
    Biochemistry; 1985 Dec; 24(27):7911-7. PubMed ID: 4092043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inspired median effective dose, brain concentration at anesthesia, and cardiovascular index for halothane in young rats.
    Cook DR; Brandom BW; Shiu G; Wolfson B
    Anesth Analg; 1981 Apr; 60(4):182-5. PubMed ID: 7193995
    [No Abstract]   [Full Text] [Related]  

  • 15. Saturation transfer difference nuclear magnetic resonance spectroscopy as a method for screening proteins for anesthetic binding.
    Streiff JH; Juranic NO; Macura SI; Warner DO; Jones KA; Perkins WJ
    Mol Pharmacol; 2004 Oct; 66(4):929-35. PubMed ID: 15385643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturable binding of halothane to rat brain synaptosomes.
    el-Maghrabi EA; Eckenhoff RG; Shuman H
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4329-32. PubMed ID: 1584767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo study of halothane uptake and elimination in the rat brain with fluorine nuclear magnetic resonance spectroscopy.
    Litt L; González-Méndez R; James TL; Sessler DI; Mills P; Chew W; Moseley M; Pereira B; Severinghaus JW; Hamilton WK
    Anesthesiology; 1987 Aug; 67(2):161-8. PubMed ID: 3605742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins.
    Tengel T; Fex T; Emtenas H; Almqvist F; Sethson I; Kihlberg J
    Org Biomol Chem; 2004 Mar; 2(5):725-31. PubMed ID: 14985813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
    Prosser RS; Luchette PA
    J Magn Reson; 2004 Dec; 171(2):225-32. PubMed ID: 15546748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.