BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36008124)

  • 1. Cu
    Du C; Feng W; Dai X; Wang J; Geng D; Li X; Chen Y; Zhang J
    Small; 2022 Sep; 18(39):e2203031. PubMed ID: 36008124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacodynamics in Alzheimer's disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils.
    Wang D; Zhang Q; Hu X; Wang W; Zhu X; Yuan Z
    Acta Biomater; 2018 Jan; 65():327-338. PubMed ID: 29111371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The redox chemistry of the Alzheimer's disease amyloid beta peptide.
    Smith DG; Cappai R; Barnham KJ
    Biochim Biophys Acta; 2007 Aug; 1768(8):1976-90. PubMed ID: 17433250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticle-capped mesoporous silica-based H
    Yang L; Yin T; Liu Y; Sun J; Zhou Y; Liu J
    Acta Biomater; 2016 Dec; 46():177-190. PubMed ID: 27619837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power of Dopamine: Multifunctional Compound Assisted Conversion of the Most Risk Factor into Therapeutics of Alzheimer's Disease.
    Gharai PK; Khan J; Pradhan K; Mallesh R; Garg S; Arshi MU; Barman S; Ghosh S
    ACS Chem Neurosci; 2024 Jul; 15(13):2470-2483. PubMed ID: 38874606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ongoing search for small molecules to study metal-associated amyloid-β species in Alzheimer's disease.
    Savelieff MG; DeToma AS; Derrick JS; Lim MH
    Acc Chem Res; 2014 Aug; 47(8):2475-82. PubMed ID: 25080056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-Functionalized Prussian Blue Nanomaterial for Antioxidant Stress and NIR Photothermal Therapy against Alzheimer's Disease.
    Song X; Ding Q; Wei W; Zhang J; Sun R; Yin L; Liu S; Pu Y
    Small; 2023 Oct; 19(41):e2206959. PubMed ID: 37322406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin Niobium Carbide MXenzyme for Remedying Hypertension by Antioxidative and Neuroprotective Actions.
    Yang H; Xia L; Ye X; Xu J; Liu T; Wang L; Zhang S; Feng W; Du D; Chen Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303539. PubMed ID: 37083315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species.
    Tiiman A; Luo J; Wallin C; Olsson L; Lindgren J; Jarvet J; Per R; Sholts SB; Rahimipour S; Abrahams JP; Karlström AE; Gräslund A; Wärmländer SK
    J Alzheimers Dis; 2016 Oct; 54(3):971-982. PubMed ID: 27567855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of a Cu Chelator That Mitigates Cu-Induced ROS Production by Amyloid Beta.
    Mitra S; Talukdar K; Prasad P; Misra SK; Khan S; Sharp JS; Jurss JW; Chakraborty S
    Chembiochem; 2022 Feb; 23(4):e202100485. PubMed ID: 34878720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease.
    Kim N; Lee HJ
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Water-Soluble Peptoid Chelator that Can Remove Cu
    Behar AE; Sabater L; Baskin M; Hureau C; Maayan G
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24588-24597. PubMed ID: 34510664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Insight into the Design of Chemical Tools to Control Multiple Pathogenic Features in Alzheimer's Disease.
    Han J; Du Z; Lim MH
    Acc Chem Res; 2021 Oct; 54(20):3930-3940. PubMed ID: 34606227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal Ions in Alzheimer's Disease: A Key Role or Not?
    Liu Y; Nguyen M; Robert A; Meunier B
    Acc Chem Res; 2019 Jul; 52(7):2026-2035. PubMed ID: 31274278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional fluorescence sensor as a potential theranostic agent against Alzheimer's disease.
    Kou X; Li X; Hu C; Liu J; Chen Y; Zhang Y; Yang A; Shen R
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120587. PubMed ID: 34782268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional Nanocarrier for Synergistic Treatment of Alzheimer's Disease by Inhibiting β-Amyloid Aggregation and Scavenging Reactive Oxygen Species.
    Wang C; Song X; Li P; Sun S; Su J; Liu S; Wei W
    ACS Appl Mater Interfaces; 2024 May; 16(21):27127-27138. PubMed ID: 38747495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper and heme-mediated Abeta toxicity: redox chemistry, Abeta oxidations and anti-ROS compounds.
    Chassaing S; Collin F; Dorlet P; Gout J; Hureau C; Faller P
    Curr Top Med Chem; 2012; 12(22):2573-95. PubMed ID: 23339309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators.
    Chen LL; Fan YG; Zhao LX; Zhang Q; Wang ZY
    Bioorg Chem; 2023 Feb; 131():106301. PubMed ID: 36455485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches.
    Ejaz HW; Wang W; Lang M
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33081348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N,N'-1,10-Bis(Naringin) Triethylenetetraamine, Synthesis and as a Cu(II) Chelator for Alzheimer's Disease Therapy.
    Guo LX; Sun B
    Biol Pharm Bull; 2021 Jan; 44(1):51-56. PubMed ID: 33162492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.