These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36008448)

  • 1. Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques.
    Kittichotsatsawat Y; Tippayawong N; Tippayawong KY
    Sci Rep; 2022 Aug; 12(1):14488. PubMed ID: 36008448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India.
    Jayakumar M; Rajavel M; Surendran U
    Int J Biometeorol; 2016 Dec; 60(12):1943-1952. PubMed ID: 27378280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases.
    de Oliveira Aparecido LE; de Souza Rolim G; da Silva Cabral De Moraes JR; Costa CTS; de Souza PS
    Int J Biometeorol; 2020 Apr; 64(4):671-688. PubMed ID: 31912306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate risks and vulnerabilities of the Arabica coffee in Brazil under current and future climates considering new CMIP6 models.
    Dias CG; Martins FB; Martins MA
    Sci Total Environ; 2024 Jan; 907():167753. PubMed ID: 37832692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change does not impact on Coffea arabica yield in Brazil.
    Ferreira WP; Ribeiro Júnior JI; de Fátima Souza C
    J Sci Food Agric; 2019 Sep; 99(12):5270-5282. PubMed ID: 28585396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIS-based multi-criteria analysis for Arabica coffee expansion in Rwanda.
    Nzeyimana I; Hartemink AE; Geissen V
    PLoS One; 2014; 9(10):e107449. PubMed ID: 25299459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.
    Ovalle-Rivera O; Läderach P; Bunn C; Obersteiner M; Schroth G
    PLoS One; 2015; 10(4):e0124155. PubMed ID: 25875230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organoleptic quality of Ethiopian Arabica coffee deteriorates with increasing intensity of coffee forest management.
    Geeraert L; Berecha G; Honnay O; Aerts R
    J Environ Manage; 2019 Feb; 231():282-288. PubMed ID: 30347347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate and disease: tackling coffee brown-eye spot with advanced forecasting models.
    de Oliveira Aparecido LE; de Lima RF; Torsoni GB; Lorençone JA; Lorençone PA; de Souza Rolim G
    J Sci Food Agric; 2024 Jul; 104(9):5442-5461. PubMed ID: 38349004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of extreme agroclimatic indicators on the performance of coffee (
    Chalchissa FB; Diga GM; Feyisa GL; Tolossa AR
    Heliyon; 2022 Aug; 8(8):e10136. PubMed ID: 36016531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India.
    Das B; Nair B; Reddy VK; Venkatesh P
    Int J Biometeorol; 2018 Oct; 62(10):1809-1822. PubMed ID: 30043218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature contributes to host specialization of coffee wilt disease (Fusarium xylarioides) on arabica and robusta coffee crops.
    Zhang X; Peck LD; Flood J; Ryan MJ; Barraclough TG
    Sci Rep; 2023 Jun; 13(1):9327. PubMed ID: 37291178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling coffee (Coffea arabica L.) climate suitability under current and future scenario in Jimma zone, Ethiopia.
    Benti F; Diga GM; Feyisa GL; Tolesa AR
    Environ Monit Assess; 2022 Mar; 194(4):271. PubMed ID: 35275266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models for simulating the frequency of pests and diseases of Coffea arabica L.
    de Oliveira Aparecido LE; de Souza Rolim G
    Int J Biometeorol; 2020 Jul; 64(7):1063-1084. PubMed ID: 32166441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warm nights drive Coffea arabica ripening in Tanzania.
    Craparo ACW; Van Asten PJA; Läderach P; Jassogne LTP; Grab SW
    Int J Biometeorol; 2021 Feb; 65(2):181-192. PubMed ID: 32929544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can nonlinear agrometeorological models estimate coffee foliation?
    de Oliveira Aparecido LE; Lorençone JA; Lorençone PA; de Souza Rolim G; de Meneses KC; da Silva Cabral de Moraes JR; Torsoni GB
    J Sci Food Agric; 2022 Jan; 102(2):584-596. PubMed ID: 34159603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends.
    Cagliani LR; Pellegrino G; Giugno G; Consonni R
    Talanta; 2013 Mar; 106():169-73. PubMed ID: 23598112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lost and Found:
    Davis AP; Gargiulo R; Fay MF; Sarmu D; Haggar J
    Front Plant Sci; 2020; 11():616. PubMed ID: 32508866
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies.
    Dankowska A; Domagała A; Kowalewski W
    Talanta; 2017 Sep; 172():215-220. PubMed ID: 28602297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of potential nitrogen-fixing bacteria from rhizosphere of the
    Bullergahn VB; Menezes KMS; Veloso TGR; da Luz JMR; Castanheira LF; Pereira LL; da Silva MCS
    3 Biotech; 2024 Jan; 14(1):27. PubMed ID: 38173824
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.