These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36008471)

  • 1. Atypical behavioral and thermoregulatory circadian rhythms in mice lacking a microbiome.
    Leone VA; Onishi KG; Kennedy M; Riggle JP; Pierre JF; Maneval AC; Spedale MN; Theriault BR; Chang EB; Prendergast BJ
    Sci Rep; 2022 Aug; 12(1):14491. PubMed ID: 36008471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonphotic entrainment of central and peripheral circadian clocks in mice by scheduled voluntary exercise under constant darkness.
    Sato RY; Yamanaka Y
    Am J Physiol Regul Integr Comp Physiol; 2023 Apr; 324(4):R526-R535. PubMed ID: 36802951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics.
    Roberts L; Leise TL; Welsh DK; Holmes TC
    J Biol Rhythms; 2016 Aug; 31(4):337-51. PubMed ID: 27221103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photic and pineal modulation of food anticipatory circadian activity rhythms in rodents.
    Patton DF; Parfyonov M; Gourmelen S; Opiol H; Pavlovski I; Marchant EG; Challet E; Mistlberger RE
    PLoS One; 2013; 8(12):e81588. PubMed ID: 24324709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling circadian rhythms by dark-pulse perturbations in Arabidopsis thaliana.
    Fukuda H; Murase H; Tokuda IT
    Sci Rep; 2013; 3():1533. PubMed ID: 23524981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod.
    Edelstein K; Amir S
    J Neurosci; 1999 Jan; 19(1):372-80. PubMed ID: 9870966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale Time-resolved Analysis Reveals Remaining Behavioral Rhythms in Mice Without Canonical Circadian Clocks.
    Morris M; Yamazaki S; Stefanovska A
    J Biol Rhythms; 2022 Jun; 37(3):310-328. PubMed ID: 35575430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Adjustment of Circadian Clocks to Simulated Travel to Time Zones across the Globe.
    Harrison EM; Gorman MR
    J Biol Rhythms; 2015 Dec; 30(6):557-62. PubMed ID: 26275871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light exposure influences the diurnal oscillation of gut microbiota in mice.
    Wu G; Tang W; He Y; Hu J; Gong S; He Z; Wei G; Lv L; Jiang Y; Zhou H; Chen P
    Biochem Biophys Res Commun; 2018 Jun; 501(1):16-23. PubMed ID: 29730287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of light, food, and temperature as environmental synchronizers of the circadian rhythm of activity in mice.
    Refinetti R
    J Physiol Sci; 2015 Jul; 65(4):359-66. PubMed ID: 25800223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The involvement of Cry1 and Cry2 genes in the regulation of the circadian body temperature rhythm in mice.
    Nagashima K; Matsue K; Konishi M; Iidaka C; Miyazaki K; Ishida N; Kanosue K
    Am J Physiol Regul Integr Comp Physiol; 2005 Jan; 288(1):R329-35. PubMed ID: 15331384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entrainment of circadian clocks in mammals by arousal and food.
    Mistlberger RE; Antle MC
    Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple Lighting Manipulations Facilitate Behavioral Entrainment of Mice to 18-h Days.
    Walbeek TJ; Gorman MR
    J Biol Rhythms; 2017 Aug; 32(4):309-322. PubMed ID: 28770653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exceptional Entrainment of Circadian Activity Rhythms With Manipulations of Rhythm Waveform in Male Syrian Hamsters.
    Gorman MR; Elliott JA
    Yale J Biol Med; 2019 Jun; 92(2):187-199. PubMed ID: 31249479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian rhythms of body temperature and motor activity in rodents their relationships with the light-dark cycle.
    Benstaali C; Mailloux A; Bogdan A; Auzéby A; Touitou Y
    Life Sci; 2001 May; 68(24):2645-56. PubMed ID: 11400908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.