BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36008581)

  • 1. Production of microalgal-based carbon encapsulated iron nanoparticles (ME-nFe) to remove heavy metals in wastewater.
    Mantovani M; Collina E; Lasagni M; Marazzi F; Mezzanotte V
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):6730-6745. PubMed ID: 36008581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater.
    Khan AA; Gul J; Naqvi SR; Ali I; Farooq W; Liaqat R; AlMohamadi H; Štěpanec L; Juchelková D
    Chemosphere; 2022 Nov; 306():135565. PubMed ID: 35793745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid fuel production through hydrothermal carbonization of sewage sludge and microalgae Chlorella sp. from wastewater treatment plant.
    Lee J; Sohn D; Lee K; Park KY
    Chemosphere; 2019 Sep; 230():157-163. PubMed ID: 31103861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.
    Bratina B; Šorgo A; Kramberger J; Ajdnik U; Zemljič LF; Ekart J; Šafarič R
    J Environ Manage; 2016 Dec; 183(Pt 3):1009-1025. PubMed ID: 27692514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of wastewater grown microalgae for agricultural purposes: Contaminants of emerging concern, heavy metals and pathogens assessment.
    Álvarez-González A; Uggetti E; Serrano L; Gorchs G; Escolà Casas M; Matamoros V; Gonzalez-Flo E; Díez-Montero R
    Environ Pollut; 2023 May; 324():121399. PubMed ID: 36878273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgal consortia for municipal wastewater treatment - Lipid augmentation and fatty acid profiling for biodiesel production.
    Sharma J; Kumar V; Kumar SS; Malyan SK; Mathimani T; Bishnoi NR; Pugazhendhi A
    J Photochem Photobiol B; 2020 Jan; 202():111638. PubMed ID: 31733613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents.
    Ajayan KV; Selvaraju M; Thirugnanamoorthy K
    Pak J Biol Sci; 2011 Aug; 14(16):805-11. PubMed ID: 22545355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dissipation from surgical cotton production wastewater using macroalgae, microalgae, and activated sludge microbes.
    Babu AR; Sharma NK; Manickam M
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86192-86201. PubMed ID: 34746986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid process for heavy metal removal from wastewater sludge.
    Drogui P; Blais JF; Mercier G
    Water Environ Res; 2005; 77(4):372-80. PubMed ID: 16121505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater.
    Arias DM; Solé-Bundó M; Garfí M; Ferrer I; García J; Uggetti E
    Bioresour Technol; 2018 Jan; 247():513-519. PubMed ID: 28972904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reed beds: constructed wetlands for municipal wastewater treatment plant sludge dewatering.
    Begg JS; Lavigne RL; Veneman PL
    Water Sci Technol; 2001; 44(11-12):393-8. PubMed ID: 11804125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of copper and zinc bioremoval by microalgae and bacteria grown in nutrient rich wastewaters.
    Antolín B; Torres A; García PA; Bolado S; Vega M
    Chemosphere; 2024 May; 355():141803. PubMed ID: 38554867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae.
    Sutherland DL; Bramucci A
    J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trade-offs between effluent quality and ammonia volatilisation with CO
    Sutherland DL; Burke J; Ralph PJ
    J Environ Manage; 2021 Jan; 277():111398. PubMed ID: 33039702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal.
    Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R
    Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review.
    Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA
    Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wastewater treatment by using microalgae: Insights into fate, transport, and associated challenges.
    Ali A; Khalid Z; Ahmed A A; Ajarem JS
    Chemosphere; 2023 Oct; 338():139501. PubMed ID: 37453525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production.
    Hu Y; Hao X; van Loosdrecht M; Chen H
    Water Res; 2017 Nov; 125():11-22. PubMed ID: 28822815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.
    Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E
    Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.