BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36008581)

  • 21. Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions.
    Cho HU; Kim YM; Park JM
    Bioresour Technol; 2017 Mar; 228():290-297. PubMed ID: 28081527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ion exchange extraction of heavy metals from wastewater sludges.
    Al-Enezi G; Hamoda MF; Fawzi N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(2):455-64. PubMed ID: 15027828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced microalgal biomass and lipid production with simultaneous effective removal of Cd using algae-bacteria-activated carbon consortium added with organic carbon source.
    Huang J; Su B; Fei X; Che J; Yao T; Zhang R; Yi S
    Chemosphere; 2024 Feb; 350():141088. PubMed ID: 38163470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wastewater treatment for nutrient removal with Ecuadorian native microalgae.
    Benítez MB; Champagne P; Ramos A; Torres AF; Ochoa-Herrera V
    Environ Technol; 2019 Sep; 40(22):2977-2985. PubMed ID: 29600735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced near-zero waste treatment of food processing wastewater with water, carbon, and nutrient recovery.
    Grossman AD; Belete YZ; Boussiba S; Yogev U; Posten C; Ortiz Tena F; Thomsen L; Wang S; Gross A; Leu S; Bernstein R
    Sci Total Environ; 2021 Jul; 779():146373. PubMed ID: 34030249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of microalgae-bacterial consortium in wastewater treatment: A review.
    Li L; Chai W; Sun C; Huang L; Sheng T; Song Z; Ma F
    J Environ Manage; 2024 Jun; 360():121226. PubMed ID: 38795468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alternatives for energy production in aerobic wastewater treatment facilities.
    Velasquez-Orta SB
    Water Sci Technol; 2013; 67(12):2856-62. PubMed ID: 23787329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microalgal-bacterial granular sludge process: A game changer of future municipal wastewater treatment?
    Zhang M; Ji B; Liu Y
    Sci Total Environ; 2021 Jan; 752():141957. PubMed ID: 32890823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microalgal-bacterial granular sludge process for non-aerated aquaculture wastewater treatment.
    Fan S; Ji B; Abu Hasan H; Fan J; Guo S; Wang J; Yuan J
    Bioprocess Biosyst Eng; 2021 Aug; 44(8):1733-1739. PubMed ID: 33772637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge.
    Lee SA; Lee N; Oh HM; Ahn CY
    J Microbiol Biotechnol; 2019 Sep; 29(9):1434-1443. PubMed ID: 31434363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Techno-economic estimation of electroplating wastewater treatment using zero-valent iron nanoparticles: batch optimization, continuous feed, and scaling up studies.
    Hamdy A; Mostafa MK; Nasr M
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):25372-25385. PubMed ID: 31264158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural microalgal cultivation systems using primary effluent and excess sludge.
    Yukiyo Y; Hiroyuki S
    Environ Technol; 2021 Nov; 42(25):3907-3919. PubMed ID: 32295487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth of microalgal biomass on supernatant from biosolid dewatering.
    Ficara E; Uslenghi A; Basilico D; Mezzanotte V
    Water Sci Technol; 2014; 69(4):896-902. PubMed ID: 24569293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater.
    Bai Y; Ji B
    World J Microbiol Biotechnol; 2023 Dec; 40(1):40. PubMed ID: 38071273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future.
    Goswami RK; Agrawal K; Shah MP; Verma P
    Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How inoculation affects the development and the performances of microalgal-bacterial consortia treating real municipal wastewater.
    Petrini S; Foladori P; Beghini F; Armanini F; Segata N; Andreottola G
    J Environ Manage; 2020 Jun; 263():110427. PubMed ID: 32174516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgal Activity and Nutrient Uptake from Wastewater Enhanced by Nanoscale Zerovalent Iron: Performance and Molecular Mechanism.
    Qiu S; Wu Z; Chen Z; Abbew AW; Li J; Ge S
    Environ Sci Technol; 2022 Jan; 56(1):585-594. PubMed ID: 34933554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microalgae as biological treatment for municipal wastewater - effects on the sludge handling in a treatment plant.
    Olsson J; Schwede S; Nehrenheim E; Thorin E
    Water Sci Technol; 2018 Sep; 78(3-4):644-654. PubMed ID: 30208005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.