BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36008611)

  • 1. Prediction of peptide mass spectral libraries with machine learning.
    Cox J
    Nat Biotechnol; 2023 Jan; 41(1):33-43. PubMed ID: 36008611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging Full-Spectrum and Fragment Ion Intensity Predictions from Deep Learning for High-Quality Spectral Libraries.
    Chan CMJ; Lam H
    J Proteome Res; 2023 Dec; 22(12):3692-3702. PubMed ID: 37910637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HMMatch: peptide identification by spectral matching of tandem mass spectra using hidden Markov models.
    Wu X; Tseng CW; Edwards N
    J Comput Biol; 2007 Oct; 14(8):1025-43. PubMed ID: 17985986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mistle: bringing spectral library predictions to metaproteomics with an efficient search index.
    Nowatzky Y; Benner P; Reinert K; Muth T
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37294786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics.
    Lam H; Aebersold R
    Methods; 2011 Aug; 54(4):424-31. PubMed ID: 21277371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AIomics: Exploring More of the Proteome Using Mass Spectral Libraries Extended by Artificial Intelligence.
    Geer LY; Lapin J; Slotta DJ; Mak TD; Stein SE
    J Proteome Res; 2023 Jul; 22(7):2246-2255. PubMed ID: 37232537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition.
    Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J
    Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semisupervised Machine Learning for Sensitive Open Modification Spectral Library Searching.
    Arab I; Fondrie WE; Laukens K; Bittremieux W
    J Proteome Res; 2023 Feb; 22(2):585-593. PubMed ID: 36688569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hybrid Spectral Library and Protein Sequence Database Search Strategy for Bottom-Up and Top-Down Proteomic Data Analysis.
    Dai Y; Millikin RJ; Rolfs Z; Shortreed MR; Smith LM
    J Proteome Res; 2022 Nov; 21(11):2609-2618. PubMed ID: 36206157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral library searching in proteomics.
    Griss J
    Proteomics; 2016 Mar; 16(5):729-40. PubMed ID: 26616598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the coverage of spectral libraries: a neighbor-based approach to predicting intensities of peptide fragmentation spectra.
    Ji C; Arnold RJ; Sokoloski KJ; Hardy RW; Tang H; Radivojac P
    Proteomics; 2013 Mar; 13(5):756-65. PubMed ID: 23303707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Updated MS²PIP web server supports cutting-edge proteomics applications.
    Declercq A; Bouwmeester R; Chiva C; Sabidó E; Hirschler A; Carapito C; Martens L; Degroeve S; Gabriels R
    Nucleic Acids Res; 2023 Jul; 51(W1):W338-W342. PubMed ID: 37140039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building Spectral Libraries from Narrow-Window Data-Independent Acquisition Mass Spectrometry Data.
    Heil LR; Fondrie WE; McGann CD; Federation AJ; Noble WS; MacCoss MJ; Keich U
    J Proteome Res; 2022 Jun; 21(6):1382-1391. PubMed ID: 35549345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of spectral library prediction for parallel reaction monitoring of viral peptides.
    Grossegesse M; Nitsche A; Schaade L; Doellinger J
    Proteomics; 2021 Apr; 21(7-8):e2000226. PubMed ID: 33615696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.
    Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L
    Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem mass spectral libraries of peptides and their roles in proteomics research.
    Shao W; Lam H
    Mass Spectrom Rev; 2017 Sep; 36(5):634-648. PubMed ID: 27403644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semi-empirical approach for predicting unobserved peptide MS/MS spectra from spectral libraries.
    Hu Y; Li Y; Lam H
    Proteomics; 2011 Dec; 11(24):4702-11. PubMed ID: 22038894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.