BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36008881)

  • 1. Difference imaging from single measurements in diffuse optical tomography: a deep learning approach.
    Li S; Zhang M; Xue M; Zhu Q
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 36008881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents.
    Ardeshirpour Y; Biswal N; Aguirre A; Zhu Q
    J Biomed Opt; 2011 Apr; 16(4):046015. PubMed ID: 21529084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitask Deep Learning Reconstruction and Localization of Lesions in Limited Angle Diffuse Optical Tomography.
    Ben Yedder H; Cardoen B; Shokoufi M; Golnaraghi F; Hamarneh G
    IEEE Trans Med Imaging; 2022 Mar; 41(3):515-530. PubMed ID: 34606449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Diffuse Optical Tomography.
    Yoo J; Sabir S; Heo D; Kim KH; Wahab A; Choi Y; Lee SI; Chae EY; Kim HH; Bae YM; Choi YW; Cho S; Ye JC
    IEEE Trans Med Imaging; 2020 Apr; 39(4):877-887. PubMed ID: 31442973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography.
    Feng J; Sun Q; Li Z; Sun Z; Jia K
    J Biomed Opt; 2018 Dec; 24(5):1-12. PubMed ID: 30569669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDU-Net: Deep Learning-Based Three-Dimensional Diffuse Optical Image Reconstruction.
    Deng B; Gu H; Zhu H; Chang K; Hoebel KV; Patel JB; Kalpathy-Cramer J; Carp SA
    IEEE Trans Med Imaging; 2023 Aug; 42(8):2439-2450. PubMed ID: 37028063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of image artifacts induced by change in the optode coupling in time-resolved diffuse optical tomography.
    Fukuzawa R; Okawa S; Matsuhashi S; Kusaka T; Tanikawa Y; Hoshi Y; Gao F; Yamada Y
    J Biomed Opt; 2011 Nov; 16(11):116022. PubMed ID: 22112127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unrolled-DOT: an interpretable deep network for diffuse optical tomography.
    Zhao Y; Raghuram A; Wang F; Kim SH; Hielscher A; Robinson JT; Veeraraghavan A
    J Biomed Opt; 2023 Mar; 28(3):036002. PubMed ID: 36908760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography.
    Sabir S; Cho S; Kim Y; Pua R; Heo D; Kim KH; Choi Y; Cho S
    Appl Opt; 2020 Feb; 59(5):1461-1470. PubMed ID: 32225405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly robust reconstruction framework for three-dimensional optical imaging based on physical model constrained neural networks.
    Chen X; Meng Y; Wang L; Zhou W; Chen D; Xie H; Ren S
    Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38394682
    [No Abstract]   [Full Text] [Related]  

  • 12. A geometric-sensitivity-difference based algorithm improves object depth-localization for diffuse optical tomography in a circular-array outward-imaging geometry.
    Xu G; Piao D
    Med Phys; 2013 Jan; 40(1):013101. PubMed ID: 23298119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust reconstruction of fluorescence molecular tomography based on adaptive adversarial learning strategy.
    Zhang P; Song F; Ma C; Liu Z; Wu H; Sun Y; Feng Y; He Y; Zhang G
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36696695
    [No Abstract]   [Full Text] [Related]  

  • 14. Model-resolution-based basis pursuit deconvolution improves diffuse optical tomographic imaging.
    Prakash J; Dehghani H; Pogue BW; Yalavarthy PK
    IEEE Trans Med Imaging; 2014 Apr; 33(4):891-901. PubMed ID: 24710158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based method to accurately estimate breast tissue optical properties in the presence of the chest wall.
    Zhang M; Li S; Zou Y; Zhu Q
    J Biomed Opt; 2021 Oct; 26(10):. PubMed ID: 34672146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imperfect refractive index matching in scanning laser optical tomography and a method for digital correction.
    Hill O; Wollweber M; Biermann T; Ripken T; Lachmayer R
    J Biomed Opt; 2024 Jun; 29(6):066004. PubMed ID: 38751827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-resolution based optimal choice of minimum required measurements for image-guided diffuse optical tomography.
    Prakash J; Yalavarthy PK
    Opt Lett; 2013 Jan; 38(2):88-90. PubMed ID: 23454924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic-net: an end-to-end data driven framework for diffuse optical imaging of breast cancer from noisy boundary data.
    Murad N; Pan MC; Hsu YF
    J Biomed Opt; 2023 Feb; 28(2):026001. PubMed ID: 36761256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head.
    Tian F; Liu H
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):166-80. PubMed ID: 23859922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.