These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 36008947)

  • 1. GraphSite: Ligand Binding Site Classification with Deep Graph Learning.
    Shi W; Singha M; Pu L; Srivastava G; Ramanujam J; Brylinski M
    Biomolecules; 2022 Jul; 12(8):. PubMed ID: 36008947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks.
    Gale-Day ZJ; Shub L; Chuang KV; Keiser MJ
    J Chem Inf Model; 2024 Jul; 64(14):5439-5450. PubMed ID: 38953560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network.
    Pu L; Govindaraj RG; Lemoine JM; Wu HC; Brylinski M
    PLoS Comput Biol; 2019 Feb; 15(2):e1006718. PubMed ID: 30716081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications.
    Feinstein J; Shi W; Ramanujam J; Brylinski M
    Methods Mol Biol; 2021; 2266():299-312. PubMed ID: 33759134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AlphaFold2-aware protein-DNA binding site prediction using graph transformer.
    Yuan Q; Chen S; Rao J; Zheng S; Zhao H; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BionoiNet: ligand-binding site classification with off-the-shelf deep neural network.
    Shi W; Lemoine JM; Shawky AA; Singha M; Pu L; Yang S; Ramanujam J; Brylinski M
    Bioinformatics; 2020 May; 36(10):3077-3083. PubMed ID: 32053156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network.
    Xia C; Feng SH; Xia Y; Pan X; Shen HB
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Protein-Ligand Docking Structure with Graph Neural Network.
    Jiang H; Wang J; Cong W; Huang Y; Ramezani M; Sarma A; Dokholyan NV; Mahdavi M; Kandemir MT
    J Chem Inf Model; 2022 Jun; 62(12):2923-2932. PubMed ID: 35699430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions.
    Torng W; Altman RB
    J Chem Inf Model; 2019 Oct; 59(10):4131-4149. PubMed ID: 31580672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph.
    Dong L; Shi S; Qu X; Luo D; Wang B
    Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GraphscoreDTA: optimized graph neural network for protein-ligand binding affinity prediction.
    Wang K; Zhou R; Tang J; Li M
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37225408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and accurate large library ligand docking with KarmaDock.
    Zhang X; Zhang O; Shen C; Qu W; Chen S; Cao H; Kang Y; Wang Z; Wang E; Zhang J; Deng Y; Liu F; Wang T; Du H; Wang L; Pan P; Chen G; Hsieh CY; Hou T
    Nat Comput Sci; 2023 Sep; 3(9):789-804. PubMed ID: 38177786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design.
    Shi W; Singha M; Srivastava G; Pu L; Ramanujam J; Brylinski M
    Front Pharmacol; 2022; 13():837715. PubMed ID: 35359869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
    Morrone JA; Weber JK; Huynh T; Luo H; Cornell WD
    J Chem Inf Model; 2020 Sep; 60(9):4170-4179. PubMed ID: 32077698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction.
    Lin X; Dai L; Zhou Y; Yu ZG; Zhang W; Shi JY; Cao DS; Zeng L; Chen H; Song B; Yu PS; Zeng X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37401373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data Mining Meets Machine Learning: A Novel ANN-based Multi-body Interaction Docking Scoring Function (MBI-score) Based on Utilizing Frequent Geometric and Chemical Patterns of Interfacial Atoms in Native Protein-ligand Complexes.
    Khashan R; Tropsha A; Zheng W
    Mol Inform; 2022 Aug; 41(8):e2100248. PubMed ID: 35142086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyper-Mol: Molecular Representation Learning via Fingerprint-Based Hypergraph.
    Cui S; Li Q; Li D; Lian Z; Hou J
    Comput Intell Neurosci; 2023; 2023():3756102. PubMed ID: 36776618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.