These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36009017)

  • 21. Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs.
    Rose JC; Popp NA; Richardson CD; Stephany JJ; Mathieu J; Wei CT; Corn JE; Maly DJ; Fowler DM
    Nat Commun; 2020 Jun; 11(1):2697. PubMed ID: 32483117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR.
    Haeussler M; Schönig K; Eckert H; Eschstruth A; Mianné J; Renaud JB; Schneider-Maunoury S; Shkumatava A; Teboul L; Kent J; Joly JS; Concordet JP
    Genome Biol; 2016 Jul; 17(1):148. PubMed ID: 27380939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement.
    Motoche-Monar C; Ordoñez JE; Chang O; Gonzales-Zubiate FA
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs.
    Coelho MA; De Braekeleer E; Firth M; Bista M; Lukasiak S; Cuomo ME; Taylor BJM
    Nat Commun; 2020 Aug; 11(1):4132. PubMed ID: 32807781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.
    Abadi S; Yan WX; Amar D; Mayrose I
    PLoS Comput Biol; 2017 Oct; 13(10):e1005807. PubMed ID: 29036168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning.
    Konstantakos V; Nentidis A; Krithara A; Paliouras G
    Nucleic Acids Res; 2022 Apr; 50(7):3616-3637. PubMed ID: 35349718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity.
    Höijer I; Johansson J; Gudmundsson S; Chin CS; Bunikis I; Häggqvist S; Emmanouilidou A; Wilbe M; den Hoed M; Bondeson ML; Feuk L; Gyllensten U; Ameur A
    Genome Biol; 2020 Dec; 21(1):290. PubMed ID: 33261648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse.
    Wang Q; Ui-Tei K
    Methods Mol Biol; 2017; 1630():43-53. PubMed ID: 28643248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.
    Muhammad Rafid AH; Toufikuzzaman M; Rahman MS; Rahman MS
    BMC Bioinformatics; 2020 Jun; 21(1):223. PubMed ID: 32487025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing.
    Xie K; Yang Y
    Methods Mol Biol; 2019; 1917():63-73. PubMed ID: 30610628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification of Cas9, gRNA and PAM: Key to further regulate genome editing and its applications.
    Gupta R; Gupta D; Ahmed KT; Dey D; Singh R; Swarnakar S; Ravichandiran V; Roy S; Ghosh D
    Prog Mol Biol Transl Sci; 2021; 178():85-98. PubMed ID: 33685601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context.
    Corsi GI; Qu K; Alkan F; Pan X; Luo Y; Gorodkin J
    Nat Commun; 2022 May; 13(1):3006. PubMed ID: 35637227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPRon/off: CRISPR/Cas9 on- and off-target gRNA design.
    Anthon C; Corsi GI; Gorodkin J
    Bioinformatics; 2022 Dec; 38(24):5437-5439. PubMed ID: 36271848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid and Efficient Gene Deletion by CRISPR/Cas9.
    Neldeborg S; Lin L; Stougaard M; Luo Y
    Methods Mol Biol; 2019; 1961():233-247. PubMed ID: 30912049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.