These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 36009024)
1. Detecting Fear-Memory-Related Genes from Neuronal scRNA-seq Data by Diverse Distributions and Bhattacharyya Distance. Zhang S; Xie L; Cui Y; Carone BR; Chen Y Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009024 [TBL] [Abstract][Full Text] [Related]
2. scMEB: a fast and clustering-independent method for detecting differentially expressed genes in single-cell RNA-seq data. Zhu J; Yang Y BMC Genomics; 2023 May; 24(1):280. PubMed ID: 37231345 [TBL] [Abstract][Full Text] [Related]
3. Single-cell RNA-seq data analysis reveals functionally relevant biomarkers of early brain development and their regulatory footprints in human embryonic stem cells (hESCs). Alamin M; Humaira Sultana M; Babarinde IA; Azad AKM; Moni MA; Xu H Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38739758 [TBL] [Abstract][Full Text] [Related]
4. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features. Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115 [TBL] [Abstract][Full Text] [Related]
5. Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles. Mallik S; Zhao Z Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31412637 [TBL] [Abstract][Full Text] [Related]
6. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
8. BCseq: accurate single cell RNA-seq quantification with bias correction. Chen L; Zheng S Nucleic Acids Res; 2018 Aug; 46(14):e82. PubMed ID: 29718338 [TBL] [Abstract][Full Text] [Related]
9. scTIGER: A Deep-Learning Method for Inferring Gene Regulatory Networks from Case versus Control scRNA-seq Datasets. Dautle M; Zhang S; Chen Y Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686146 [TBL] [Abstract][Full Text] [Related]
10. Robustness of single-cell RNA-seq for identifying differentially expressed genes. Liu Y; Huang J; Pandey R; Liu P; Therani B; Qiu Q; Rao S; Geurts AM; Cowley AW; Greene AS; Liang M BMC Genomics; 2023 Jul; 24(1):371. PubMed ID: 37394518 [TBL] [Abstract][Full Text] [Related]
11. Detection of high variability in gene expression from single-cell RNA-seq profiling. Chen HI; Jin Y; Huang Y; Chen Y BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924 [TBL] [Abstract][Full Text] [Related]
12. Random forest based similarity learning for single cell RNA sequencing data. Pouyan MB; Kostka D Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006 [TBL] [Abstract][Full Text] [Related]
13. Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data. Wang J; Roeder K; Devlin B Genome Res; 2021 Oct; 31(10):1807-1818. PubMed ID: 33837133 [TBL] [Abstract][Full Text] [Related]
14. scCODE: an R package for data-specific differentially expressed gene detection on single-cell RNA-sequencing data. Zou J; Deng F; Wang M; Zhang Z; Liu Z; Zhang X; Hua R; Chen K; Zou X; Hao J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35598331 [TBL] [Abstract][Full Text] [Related]
15. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data. Zhou L; Pan Q Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443 [TBL] [Abstract][Full Text] [Related]
16. Theoretical framework for the difference of two negative binomial distributions and its application in comparative analysis of sequencing data. Petrany A; Chen R; Zhang S; Chen Y Genome Res; 2024 Oct; 34(10):1636-1650. PubMed ID: 39406498 [TBL] [Abstract][Full Text] [Related]
17. JOINT for large-scale single-cell RNA-sequencing analysis via soft-clustering and parallel computing. Cui T; Wang T BMC Genomics; 2021 Jan; 22(1):47. PubMed ID: 33430769 [TBL] [Abstract][Full Text] [Related]
19. A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data. Zhu B; Li H; Zhang L; Chandra SS; Zhao H Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514182 [TBL] [Abstract][Full Text] [Related]
20. Detection of differentially expressed genes in discrete single-cell RNA sequencing data using a hurdle model with correlated random effects. Sekula M; Gaskins J; Datta S Biometrics; 2019 Dec; 75(4):1051-1062. PubMed ID: 31009065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]