BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 36009491)

  • 1. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage.
    Kou Y; Geng F; Guo D
    Biomedicines; 2022 Aug; 10(8):. PubMed ID: 36009491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1-Mediated Lipogenesis.
    Geng F; Cheng X; Wu X; Yoo JY; Cheng C; Guo JY; Mo X; Ru P; Hurwitz B; Kim SH; Otero J; Puduvalli V; Lefai E; Ma J; Nakano I; Horbinski C; Kaur B; Chakravarti A; Guo D
    Clin Cancer Res; 2016 Nov; 22(21):5337-5348. PubMed ID: 27281560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid droplets, potential biomarker and metabolic target in glioblastoma.
    Geng F; Guo D
    Intern Med Rev (Wash D C); 2017 May; 3(5):. PubMed ID: 29034362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress.
    Cheng X; Geng F; Pan M; Wu X; Zhong Y; Wang C; Tian Z; Cheng C; Zhang R; Puduvalli V; Horbinski C; Mo X; Han X; Chakravarti A; Guo D
    Cell Metab; 2020 Aug; 32(2):229-242.e8. PubMed ID: 32559414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SREBF1/SREBP-1 concurrently regulates lipid synthesis and lipophagy to maintain lipid homeostasis and tumor growth.
    Geng F; Guo D
    Autophagy; 2024 May; 20(5):1183-1185. PubMed ID: 37927089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SREBP-1 upregulates lipophagy to maintain cholesterol homeostasis in brain tumor cells.
    Geng F; Zhong Y; Su H; Lefai E; Magaki S; Cloughesy TF; Yong WH; Chakravarti A; Guo D
    Cell Rep; 2023 Jul; 42(7):112790. PubMed ID: 37436895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DGKB mediates radioresistance by regulating DGAT1-dependent lipotoxicity in glioblastoma.
    Kang H; Lee H; Kim K; Shin E; Kim B; Kang J; Kim B; Lee JS; Lee JM; Youn H; Youn B
    Cell Rep Med; 2023 Jan; 4(1):100880. PubMed ID: 36603576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid droplets and lipotoxicity during autophagy.
    Nguyen TB; Olzmann JA
    Autophagy; 2017; 13(11):2002-2003. PubMed ID: 28806138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing fatty acid-induced lipotoxicity and its therapeutic potential in glioblastoma using stimulated Raman microscopy.
    Yuan Y; Shah N; Almohaisin MI; Saha S; Lu F
    Sci Rep; 2021 Apr; 11(1):7422. PubMed ID: 33795756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle.
    Conte G; Mele M; Chessa S; Castiglioni B; Serra A; Pagnacco G; Secchiari P
    J Dairy Sci; 2010 Feb; 93(2):753-63. PubMed ID: 20105547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma?
    Löhr M; Härtig W; Schulze A; Kroiß M; Sbiera S; Lapa C; Mages B; Strobel S; Hundt JE; Bohnert S; Kircher S; Janaki-Raman S; Monoranu CM
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ménage à trois of autophagy, lipid droplets and liver disease.
    Filali-Mouncef Y; Hunter C; Roccio F; Zagkou S; Dupont N; Primard C; Proikas-Cezanne T; Reggiori F
    Autophagy; 2022 Jan; 18(1):50-72. PubMed ID: 33794741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation.
    Klipsic D; Landrock D; Martin GG; McIntosh AL; Landrock KK; Mackie JT; Schroeder F; Kier AB
    Am J Physiol Gastrointest Liver Physiol; 2015 Sep; 309(5):G387-99. PubMed ID: 26113298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5.
    Mitra R; Le TT; Gorjala P; Goodman OB
    BMC Cancer; 2017 Sep; 17(1):631. PubMed ID: 28877685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid communication: lipid metabolic gene expression and triacylglycerol accumulation in goat mammary epithelial cells are decreased by inhibition of SREBP-1.
    Xu H; Luo J; Tian H; Li J; Zhang X; Chen Z; Li M; Loor JJ
    J Anim Sci; 2018 Jun; 96(6):2399-2407. PubMed ID: 29846631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DGAT1 protects tumor from lipotoxicity, emerging as a promising metabolic target for cancer therapy.
    Cheng X; Geng F; Guo D
    Mol Cell Oncol; 2020 Sep; 7(6):1805257. PubMed ID: 33235909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diacylglycerol acyltransferase-2 (DGAT2) and monoacylglycerol acyltransferase-2 (MGAT2) interact to promote triacylglycerol synthesis.
    Jin Y; McFie PJ; Banman SL; Brandt C; Stone SJ
    J Biol Chem; 2014 Oct; 289(41):28237-48. PubMed ID: 25164810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma.
    Nishikawa Y; Quittnat F; Stedman TT; Voelker DR; Choi JY; Zahn M; Yang M; Pypaert M; Joiner KA; Coppens I
    Cell Microbiol; 2005 Jun; 7(6):849-67. PubMed ID: 15888087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback Loop Regulation of SCAP/SREBP-1 by miR-29 Modulates EGFR Signaling-Driven Glioblastoma Growth.
    Ru P; Hu P; Geng F; Mo X; Cheng C; Yoo JY; Cheng X; Wu X; Guo JY; Nakano I; Lefai E; Kaur B; Chakravarti A; Guo D
    Cell Rep; 2016 Aug; 16(6):1527-1535. PubMed ID: 27477273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the biogenesis of lipid bodies in ancient eukaryotes: synthesis of triacylglycerols by a Toxoplasma DGAT1-related enzyme.
    Quittnat F; Nishikawa Y; Stedman TT; Voelker DR; Choi JY; Zahn MM; Murphy RC; Barkley RM; Pypaert M; Joiner KA; Coppens I
    Mol Biochem Parasitol; 2004 Nov; 138(1):107-22. PubMed ID: 15500922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.