These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36009611)

  • 1. Introducing the Software CASE (Cluster and Analyze Sound Events) by Comparing Different Clustering Methods and Audio Transformation Techniques Using Animal Vocalizations.
    Schneider S; Hammerschmidt K; Dierkes PW
    Animals (Basel); 2022 Aug; 12(16):. PubMed ID: 36009611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing DeepSqueak for automatic detection and classification of mammalian vocalizations: a case study on primate vocalizations.
    Romero-Mujalli D; Bergmann T; Zimmermann A; Scheumann M
    Sci Rep; 2021 Dec; 11(1):24463. PubMed ID: 34961788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vocal repertoire of the domesticated zebra finch: a data-driven approach to decipher the information-bearing acoustic features of communication signals.
    Elie JE; Theunissen FE
    Anim Cogn; 2016 Mar; 19(2):285-315. PubMed ID: 26581377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical approaches for evaluating passive acoustic monitoring data: A case study of avian vocalizations.
    Symes LB; Kittelberger KD; Stone SM; Holmes RT; Jones JS; Castaneda Ruvalcaba IP; Webster MS; Ayres MP
    Ecol Evol; 2022 Apr; 12(4):e8797. PubMed ID: 35475182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Automated Bioacoustics and General Acoustics Classification Research.
    Mutanu L; Gohil J; Gupta K; Wagio P; Kotonya G
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations.
    Thomas M; Jensen FH; Averly B; Demartsev V; Manser MB; Sainburg T; Roch MA; Strandburg-Peshkin A
    J Anim Ecol; 2022 Aug; 91(8):1567-1581. PubMed ID: 35657634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic classification of killer whale vocalizations using dynamic time warping.
    Brown JC; Miller PJ
    J Acoust Soc Am; 2007 Aug; 122(2):1201-7. PubMed ID: 17672666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustically diverse vocalization repertoire in the Himalayan leaf-nosed bat, a widely distributed Hipposideros species.
    Lin A; Jiang T; Feng J; Kanwal JS
    J Acoust Soc Am; 2016 Nov; 140(5):3765. PubMed ID: 27908088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual vocalization stimuli for investigating neural representations of species-specific vocalizations.
    DiMattina C; Wang X
    J Neurophysiol; 2006 Feb; 95(2):1244-62. PubMed ID: 16207780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing Vocal Repertoires--Hard vs. Soft Classification Approaches.
    Wadewitz P; Hammerschmidt K; Battaglia D; Witt A; Wolf F; Fischer J
    PLoS One; 2015; 10(4):e0125785. PubMed ID: 25915039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach for automatic classification of grouper vocalizations with passive acoustic monitoring.
    Ibrahim AK; Chérubin LM; Zhuang H; Schärer Umpierre MT; Dalgleish F; Erdol N; Ouyang B; Dalgleish A
    J Acoust Soc Am; 2018 Feb; 143(2):666. PubMed ID: 29495690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filling in the gaps: Acoustic gradation increases in the vocal ontogeny of chimpanzees (Pan troglodytes).
    Taylor D; Dezecache G; Davila-Ross M
    Am J Primatol; 2021 May; 83(5):e23249. PubMed ID: 33792937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics.
    Wang X; Merzenich MM; Beitel R; Schreiner CE
    J Neurophysiol; 1995 Dec; 74(6):2685-706. PubMed ID: 8747224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated extraction and classification of time-frequency contours in humpback vocalizations.
    Ou H; Au WW; Zurk LM; Lammers MO
    J Acoust Soc Am; 2013 Jan; 133(1):301-10. PubMed ID: 23297903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pitch- and spectral-based dynamic time warping methods for comparing field recordings of harmonic avian vocalizations.
    Meliza CD; Keen SC; Rubenstein DR
    J Acoust Soc Am; 2013 Aug; 134(2):1407-15. PubMed ID: 23927136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory Selectivity for Spectral Contrast in Cortical Neurons and Behavior.
    So NLT; Edwards JA; Woolley SMN
    J Neurosci; 2020 Jan; 40(5):1015-1027. PubMed ID: 31826944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding good acoustic features for parrot vocalizations: the feature generation approach.
    Giret N; Roy P; Albert A; Pachet F; Kreutzer M; Bovet D
    J Acoust Soc Am; 2011 Feb; 129(2):1089-99. PubMed ID: 21361465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geographic variation and acoustic structure of the underwater vocalization of harbor seal (Phoca vitulina) in Norway, Sweden and Scotland.
    Bjørgesaeter A; Ugland KI; Bjørge A
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2459-68. PubMed ID: 15532676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of vocalizations of killer whales using dynamic time warping.
    Brown JC; Hodgins-Davis A; Miller PJ
    J Acoust Soc Am; 2006 Mar; 119(3):EL34-40. PubMed ID: 16583929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the ecological significance of animal vocalizations to improve inference in acoustic monitoring programs.
    Wood CM; Klinck H; Gustafson M; Keane JJ; Sawyer SC; Gutiérrez RJ; Peery MZ
    Conserv Biol; 2021 Feb; 35(1):336-345. PubMed ID: 32297668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.