BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36009787)

  • 1. Soft Tissue and Biomolecular Preservation in Vertebrate Fossils from Glauconitic, Shallow Marine Sediments of the Hornerstown Formation, Edelman Fossil Park, New Jersey.
    Voegele KK; Boles ZM; Ullmann PV; Schroeter ER; Zheng W; Lacovara KJ
    Biology (Basel); 2022 Aug; 11(8):. PubMed ID: 36009787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative taphonomy, taphofacies, and bonebeds of the Mio-Pliocene Purisima Formation, central California: strong physical control on marine vertebrate preservation in shallow marine settings.
    Boessenecker RW; Perry FA; Schmitt JG
    PLoS One; 2014; 9(3):e91419. PubMed ID: 24626134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.
    Peterson JE; Lenczewski ME; Scherer RP
    PLoS One; 2010 Oct; 5(10):e13334. PubMed ID: 20967227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present.
    Schweitzer MH; Wittmeyer JL; Horner JR
    Proc Biol Sci; 2007 Jan; 274(1607):183-97. PubMed ID: 17148248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Macro- and Microscale Preservation in Vertebrate Fossils as Predictors for Molecular Preservation in Fluvial Environments.
    Colleary C; O'Reilly S; Dolocan A; Toyoda JG; Chu RK; Tfaily MM; Hochella MF; Nesbitt SJ
    Biology (Basel); 2022 Sep; 11(9):. PubMed ID: 36138783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular tests support the viability of rare earth elements as proxies for fossil biomolecule preservation.
    Ullmann PV; Voegele KK; Grandstaff DE; Ash RD; Zheng W; Schroeter ER; Schweitzer MH; Lacovara KJ
    Sci Rep; 2020 Sep; 10(1):15566. PubMed ID: 32968129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exceptional preservation and the fossil record of tetrapod integument.
    Eliason CM; Hudson L; Watts T; Garza H; Clarke JA
    Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28878057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular histology as a novel proxy for ancient DNA and protein sequence preservation.
    Anderson LA
    Ecol Evol; 2022 Dec; 12(12):e9518. PubMed ID: 36518622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the Control of Preservational Environment on Taphonomic and Ecological Patterns in an Oligocene Mammal Fauna from Badlands National Park, South Dakota.
    Wilson PK; Moore JR
    PLoS One; 2016; 11(6):e0157585. PubMed ID: 27303807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associations of Vertebrate Skeletal Concentrations and Discontinuity Surfaces in Terrestrial and Shallow Marine Records: A Test in the Cretaceous of Montana.
    Rogers RR; Kidwell SM
    J Geol; 2000 Mar; 108(2):131-154. PubMed ID: 10736266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record.
    Siljeström S; Neubeck A; Steele A
    PLoS One; 2022; 17(6):e0269568. PubMed ID: 35767560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ SEM/EDS compositional characterization of osteocytes and blood vessels in fossil and extant turtles on untreated bone surfaces; different preservational pathways microns away.
    Cadena EA
    PeerJ; 2020; 8():e9833. PubMed ID: 32913685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microspectroscopic evidence of cretaceous bone proteins.
    Lindgren J; Uvdal P; Engdahl A; Lee AH; Alwmark C; Bergquist KE; Nilsson E; Ekström P; Rasmussen M; Douglas DA; Polcyn MJ; Jacobs LL
    PLoS One; 2011 Apr; 6(4):e19445. PubMed ID: 21559386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preservation of key biomolecules in the fossil record: current knowledge and future challenges.
    Bada JL; Wang XS; Hamilton H
    Philos Trans R Soc Lond B Biol Sci; 1999 Jan; 354(1379):77-86; discussion 86-7. PubMed ID: 10091249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers.
    Wiemann J; Fabbri M; Yang TR; Stein K; Sander PM; Norell MA; Briggs DEG
    Nat Commun; 2018 Nov; 9(1):4741. PubMed ID: 30413693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens.
    Bertazzo S; Maidment SC; Kallepitis C; Fearn S; Stevens MM; Xie HN
    Nat Commun; 2015 Jun; 6():7352. PubMed ID: 26056764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The non-uniformity of fossil preservation.
    Holland SM
    Philos Trans R Soc Lond B Biol Sci; 2016 Jul; 371(1699):. PubMed ID: 27325828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fenxiang biota: a new Early Ordovician shallow-water fauna with soft-part preservation from China.
    Balinski A; Sun Y
    Sci Bull (Beijing); 2015; 60(8):812-818. PubMed ID: 26317040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecules preserved in ca. 168 million year old fossil conifer wood.
    Marynowski L; Otto A; Zatoń M; Philippe M; Simoneit BR
    Naturwissenschaften; 2007 Mar; 94(3):228-36. PubMed ID: 17139498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland.
    Surmik D; Boczarowski A; Balin K; Dulski M; Szade J; Kremer B; Pawlicki R
    PLoS One; 2016; 11(3):e0151143. PubMed ID: 26977600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.