These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36010173)
1. Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach. Larroza A; Pérez-Benito FJ; Perez-Cortes JC; Román M; Pollán M; Pérez-Gómez B; Salas-Trejo D; Casals M; Llobet R Diagnostics (Basel); 2022 Jul; 12(8):. PubMed ID: 36010173 [TBL] [Abstract][Full Text] [Related]
2. A deep learning framework to classify breast density with noisy labels regularization. Lopez-Almazan H; Javier Pérez-Benito F; Larroza A; Perez-Cortes JC; Pollan M; Perez-Gomez B; Salas Trejo D; Casals M; Llobet R Comput Methods Programs Biomed; 2022 Jun; 221():106885. PubMed ID: 35594581 [TBL] [Abstract][Full Text] [Related]
3. A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation. Pérez-Benito FJ; Signol F; Perez-Cortes JC; Fuster-Baggetto A; Pollan M; Pérez-Gómez B; Salas-Trejo D; Casals M; Martínez I; LLobet R Comput Methods Programs Biomed; 2020 Oct; 195():105668. PubMed ID: 32755754 [TBL] [Abstract][Full Text] [Related]
4. Area-based breast percentage density estimation in mammograms using weight-adaptive multitask learning. Gudhe NR; Behravan H; Sudah M; Okuma H; Vanninen R; Kosma VM; Mannermaa A Sci Rep; 2022 Jul; 12(1):12060. PubMed ID: 35835933 [TBL] [Abstract][Full Text] [Related]
5. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
6. Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI. Zhang L; Mohamed AA; Chai R; Guo Y; Zheng B; Wu S J Magn Reson Imaging; 2020 Feb; 51(2):635-643. PubMed ID: 31301201 [TBL] [Abstract][Full Text] [Related]
7. Utility of U-Net for the objective segmentation of the fibroglandular tissue region on clinical digital mammograms. Yamamuro M; Asai Y; Hashimoto N; Yasuda N; Kimura H; Yamada T; Nemoto M; Kimura Y; Handa H; Yoshida H; Abe K; Tada M; Habe H; Nagaoka T; Nin S; Ishii K; Kondo Y Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 35728581 [TBL] [Abstract][Full Text] [Related]
8. Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views. Taghanaki SA; Liu Y; Miles B; Hamarneh G IEEE Trans Biomed Eng; 2017 Nov; 64(11):2662-2671. PubMed ID: 28129144 [TBL] [Abstract][Full Text] [Related]
9. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation. Liu L; Zhang Z; Li S; Ma K; Zheng Y Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837 [TBL] [Abstract][Full Text] [Related]
10. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. Yin K; Yan S; Song C; Zheng B Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):237-248. PubMed ID: 30288698 [TBL] [Abstract][Full Text] [Related]
12. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Keller BM; Nathan DL; Wang Y; Zheng Y; Gee JC; Conant EF; Kontos D Med Phys; 2012 Aug; 39(8):4903-17. PubMed ID: 22894417 [TBL] [Abstract][Full Text] [Related]
13. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images. Sebai M; Wang X; Wang T Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109 [TBL] [Abstract][Full Text] [Related]
14. A Weakly Supervised Learning Approach for Surgical Instrument Segmentation from Laparoscopic Video Sequences. Yang Z; Simon R; Linte C Proc SPIE Int Soc Opt Eng; 2022; 12034():. PubMed ID: 35663908 [TBL] [Abstract][Full Text] [Related]
15. Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts. Pérez-Benito FJ; Signol F; Pérez-Cortés JC; Pollán M; Pérez-Gómez B; Salas-Trejo D; Casals M; Martínez I; LLobet R Comput Methods Programs Biomed; 2019 Aug; 177():123-132. PubMed ID: 31319940 [TBL] [Abstract][Full Text] [Related]
16. Computerized image analysis: estimation of breast density on mammograms. Zhou C; Chan HP; Petrick N; Helvie MA; Goodsitt MM; Sahiner B; Hadjiiski LM Med Phys; 2001 Jun; 28(6):1056-69. PubMed ID: 11439475 [TBL] [Abstract][Full Text] [Related]
17. Fully Automated Breast Density Segmentation and Classification Using Deep Learning. Saffari N; Rashwan HA; Abdel-Nasser M; Kumar Singh V; Arenas M; Mangina E; Herrera B; Puig D Diagnostics (Basel); 2020 Nov; 10(11):. PubMed ID: 33238512 [TBL] [Abstract][Full Text] [Related]
18. WAVELET-BASED AUTOMATIC PECTORAL MUSCLE SEGMENTATION FOR MAMMOGRAMS. White B; Harrow A; Cinelli C; Batchelder K; Khalil A medRxiv; 2024 Feb; ():. PubMed ID: 38370747 [TBL] [Abstract][Full Text] [Related]
19. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
20. Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts. Verburg E; Wolterink JM; de Waard SN; Išgum I; van Gils CH; Veldhuis WB; Gilhuijs KGA Med Phys; 2019 Oct; 46(10):4405-4416. PubMed ID: 31274194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]