These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36010173)
21. Classification of fatty and dense breast parenchyma: comparison of automatic volumetric density measurement and radiologists' classification and their inter-observer variation. Østerås BH; Martinsen AC; Brandal SH; Chaudhry KN; Eben E; Haakenaasen U; Falk RS; Skaane P Acta Radiol; 2016 Oct; 57(10):1178-85. PubMed ID: 26792823 [TBL] [Abstract][Full Text] [Related]
22. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram. Al-Antari MA; Al-Masni MA; Kim TS Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663 [TBL] [Abstract][Full Text] [Related]
23. Deep learning-based breast region segmentation in raw and processed digital mammograms: generalization across views and vendors. Verboom SD; Caballo M; Peters J; Gommers J; van den Oever D; Broeders MJM; Teuwen J; Sechopoulos I J Med Imaging (Bellingham); 2024 Jan; 11(1):014001. PubMed ID: 38162417 [TBL] [Abstract][Full Text] [Related]
24. A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms. Shi P; Zhong J; Rampun A; Wang H Comput Biol Med; 2018 May; 96():178-188. PubMed ID: 29597143 [TBL] [Abstract][Full Text] [Related]
25. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964 [TBL] [Abstract][Full Text] [Related]
26. Development of U-Net Breast Density Segmentation Method for Fat-Sat MR Images Using Transfer Learning Based on Non-Fat-Sat Model. Zhang Y; Chan S; Chen JH; Chang KT; Lin CY; Pan HB; Lin WC; Kwong T; Parajuli R; Mehta RS; Chien SH; Su MY J Digit Imaging; 2021 Aug; 34(4):877-887. PubMed ID: 34244879 [TBL] [Abstract][Full Text] [Related]
27. SCU-Net: A deep learning method for segmentation and quantification of breast arterial calcifications on mammograms. Guo X; O'Neill WC; Vey B; Yang TC; Kim TJ; Ghassemi M; Pan I; Gichoya JW; Trivedi H; Banerjee I Med Phys; 2021 Oct; 48(10):5851-5861. PubMed ID: 34328661 [TBL] [Abstract][Full Text] [Related]
28. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets. Fashandi H; Kuling G; Lu Y; Wu H; Martel AL Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062 [TBL] [Abstract][Full Text] [Related]
30. Digital mammography dataset for breast cancer diagnosis research (DMID) with breast mass segmentation analysis. Oza P; Oza U; Oza R; Sharma P; Patel S; Kumar P; Gohel B Biomed Eng Lett; 2024 Mar; 14(2):317-330. PubMed ID: 38374902 [No Abstract] [Full Text] [Related]
31. Detection and Segmentation of Pectoral Muscle on MLO-View Mammogram Using Enhancement Filter. Vikhe PS; Thool VR J Med Syst; 2017 Oct; 41(12):190. PubMed ID: 29071592 [TBL] [Abstract][Full Text] [Related]
32. Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans. Hirsch L; Huang Y; Luo S; Rossi Saccarelli C; Lo Gullo R; Daimiel Naranjo I; Bitencourt AGV; Onishi N; Ko ES; Leithner D; Avendano D; Eskreis-Winkler S; Hughes M; Martinez DF; Pinker K; Juluru K; El-Rowmeim AE; Elnajjar P; Morris EA; Makse HA; Parra LC; Sutton EJ Radiol Artif Intell; 2022 Jan; 4(1):e200231. PubMed ID: 35146431 [TBL] [Abstract][Full Text] [Related]
33. Breast cancer risk analysis based on a novel segmentation framework for digital mammograms. Chen X; Moschidis E; Taylor C; Astley S Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):536-43. PubMed ID: 25333160 [TBL] [Abstract][Full Text] [Related]
34. Improving radiologist's ability in identifying particular abnormal lesions on mammograms through training test set with immediate feedback. Trieu PDY; Lewis SJ; Li T; Ho K; Wong DJ; Tran OTM; Puslednik L; Black D; Brennan PC Sci Rep; 2021 May; 11(1):9899. PubMed ID: 33972611 [TBL] [Abstract][Full Text] [Related]
35. FS-UNet: Mass segmentation in mammograms using an encoder-decoder architecture with feature strengthening. Pi J; Qi Y; Lou M; Li X; Wang Y; Xu C; Ma Y Comput Biol Med; 2021 Oct; 137():104800. PubMed ID: 34507155 [TBL] [Abstract][Full Text] [Related]
36. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling. Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D; Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724 [TBL] [Abstract][Full Text] [Related]
37. Semi-automated and fully automated mammographic density measurement and breast cancer risk prediction. Llobet R; Pollán M; Antón J; Miranda-García J; Casals M; Martínez I; Ruiz-Perales F; Pérez-Gómez B; Salas-Trejo D; Pérez-Cortés JC Comput Methods Programs Biomed; 2014 Sep; 116(2):105-15. PubMed ID: 24636804 [TBL] [Abstract][Full Text] [Related]
38. Influence of using manual or automatic breast density information in a mass detection CAD system. Oliver A; Lladó X; Freixenet J; Martí R; Pérez E; Pont J; Zwiggelaar R Acad Radiol; 2010 Jul; 17(7):877-83. PubMed ID: 20540910 [TBL] [Abstract][Full Text] [Related]
39. Learning from multiple annotators for medical image segmentation. Zhang L; Tanno R; Xu M; Huang Y; Bronik K; Jin C; Jacob J; Zheng Y; Shao L; Ciccarelli O; Barkhof F; Alexander DC Pattern Recognit; 2023 Jun; 138():None. PubMed ID: 37781685 [TBL] [Abstract][Full Text] [Related]
40. G-T correcting: an improved training of image segmentation under noisy labels. Gao Y; Fu J; Guo Y; Wang Y Med Biol Eng Comput; 2024 Dec; 62(12):3781-3799. PubMed ID: 39031327 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]