These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
4. ViVGG19: Novel exemplar deep feature extraction-based shoulder rotator cuff tear and biceps tendinosis detection using magnetic resonance images. Key S; Demir S; Gurger M; Yilmaz E; Barua PD; Dogan S; Tuncer T; Arunkumar N; Tan RS; Acharya UR Med Eng Phys; 2022 Dec; 110():103864. PubMed ID: 35987726 [TBL] [Abstract][Full Text] [Related]
5. EDLDR: An Ensemble Deep Learning Technique for Detection and Classification of Diabetic Retinopathy. Mondal SS; Mandal N; Singh KK; Singh A; Izonin I Diagnostics (Basel); 2022 Dec; 13(1):. PubMed ID: 36611416 [TBL] [Abstract][Full Text] [Related]
6. Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm. Li F; Liu Z; Chen H; Jiang M; Zhang X; Wu Z Transl Vis Sci Technol; 2019 Nov; 8(6):4. PubMed ID: 31737428 [TBL] [Abstract][Full Text] [Related]
7. Detection of Diabetic Eye Disease from Retinal Images Using a Deep Learning Based CenterNet Model. Nazir T; Nawaz M; Rashid J; Mahum R; Masood M; Mehmood A; Ali F; Kim J; Kwon HY; Hussain A Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450729 [TBL] [Abstract][Full Text] [Related]
8. Automated Urine Cell Image Classification Model Using Chaotic Mixer Deep Feature Extraction. Erten M; Tuncer I; Barua PD; Yildirim K; Dogan S; Tuncer T; Tan RS; Fujita H; Acharya UR J Digit Imaging; 2023 Aug; 36(4):1675-1686. PubMed ID: 37131063 [TBL] [Abstract][Full Text] [Related]
9. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning. Alyoubi WL; Abulkhair MF; Shalash WM Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541 [TBL] [Abstract][Full Text] [Related]
10. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028 [TBL] [Abstract][Full Text] [Related]
11. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335 [TBL] [Abstract][Full Text] [Related]
12. A novel deep learning model for diabetic retinopathy detection in retinal fundus images using pre-trained CNN and HWBLSTM. Hemanth SV; Alagarsamy S; Rajkumar TD J Biomol Struct Dyn; 2024 Feb; ():1-19. PubMed ID: 38373067 [TBL] [Abstract][Full Text] [Related]
13. A Lightweight Diabetic Retinopathy Detection Model Using a Deep-Learning Technique. Wahab Sait AR Diagnostics (Basel); 2023 Oct; 13(19):. PubMed ID: 37835861 [TBL] [Abstract][Full Text] [Related]
14. PatchResNet: Multiple Patch Division-Based Deep Feature Fusion Framework for Brain Tumor Classification Using MRI Images. Muezzinoglu T; Baygin N; Tuncer I; Barua PD; Baygin M; Dogan S; Tuncer T; Palmer EE; Cheong KH; Acharya UR J Digit Imaging; 2023 Jun; 36(3):973-987. PubMed ID: 36797543 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image. Ali A; Qadri S; Khan Mashwani W; Kumam W; Kumam P; Naeem S; Goktas A; Jamal F; Chesneau C; Anam S; Sulaiman M Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286339 [TBL] [Abstract][Full Text] [Related]
16. A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. AbdelMaksoud E; Barakat S; Elmogy M Med Biol Eng Comput; 2022 Jul; 60(7):2015-2038. PubMed ID: 35545738 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN. Alwakid G; Gouda W; Humayun M Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510123 [TBL] [Abstract][Full Text] [Related]
18. Swin-textural: A novel textural features-based image classification model for COVID-19 detection on chest computed tomography. Tuncer I; Barua PD; Dogan S; Baygin M; Tuncer T; Tan RS; Yeong CH; Acharya UR Inform Med Unlocked; 2023; 36():101158. PubMed ID: 36618887 [TBL] [Abstract][Full Text] [Related]
19. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC). Das D; Biswas SK; Bandyopadhyay S Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440 [TBL] [Abstract][Full Text] [Related]
20. Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images. Kaplan E; Chan WY; Dogan S; Barua PD; Bulut HT; Tuncer T; Cizik M; Tan RS; Acharya UR Med Eng Phys; 2022 Oct; 108():103895. PubMed ID: 36195364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]