BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 36010560)

  • 61. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening.
    Li S; Chen K; Grierson D
    New Phytol; 2019 Mar; 221(4):1724-1741. PubMed ID: 30328615
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR.
    Fujisawa M; Ito Y
    Plant Signal Behav; 2013 Jun; 8(6):e24357. PubMed ID: 23518588
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Contribution of abscisic acid to aromatic volatiles in cherry tomato (Solanum lycopersicum L.) fruit during postharvest ripening.
    Wu Q; Tao X; Ai X; Luo Z; Mao L; Ying T; Li L
    Plant Physiol Biochem; 2018 Sep; 130():205-214. PubMed ID: 29990773
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening.
    Gu T; Jia S; Huang X; Wang L; Fu W; Huo G; Gan L; Ding J; Li Y
    Planta; 2019 Jul; 250(1):145-162. PubMed ID: 30949762
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Gene regulation in climacteric fruit ripening.
    Brumos J
    Curr Opin Plant Biol; 2021 Oct; 63():102042. PubMed ID: 33971378
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1, a core component of ethylene signal transduction.
    Zhao W; Li Y; Fan S; Wen T; Wang M; Zhang L; Zhao L
    J Exp Bot; 2021 May; 72(12):4269-4282. PubMed ID: 33773493
    [TBL] [Abstract][Full Text] [Related]  

  • 67. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network.
    Itkin M; Seybold H; Breitel D; Rogachev I; Meir S; Aharoni A
    Plant J; 2009 Dec; 60(6):1081-95. PubMed ID: 19891701
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The RIN-regulated Small Auxin-Up RNA SAUR69 is involved in the unripe-to-ripe phase transition of tomato fruit via enhancement of the sensitivity to ethylene.
    Shin JH; Mila I; Liu M; Rodrigues MA; Vernoux T; Pirrello J; Bouzayen M
    New Phytol; 2019 Apr; 222(2):820-836. PubMed ID: 30511456
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Overexpression of a basic helix-loop-helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.).
    Waseem M; Li N; Su D; Chen J; Li Z
    Planta; 2019 Jul; 250(1):173-185. PubMed ID: 30955097
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transcriptome-wide identification and expression profiling of the ERF gene family suggest roles as transcriptional activators and repressors of fruit ripening in durian.
    Khaksar G; Sirikantaramas S
    PLoS One; 2021; 16(8):e0252367. PubMed ID: 34375337
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches.
    Trainotti L; Tadiello A; Casadoro G
    J Exp Bot; 2007; 58(12):3299-308. PubMed ID: 17925301
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Full-length fruit transcriptomes of southern highbush (Vaccinium sp.) and rabbiteye (V. virgatum Ait.) blueberry.
    Wang YW; Nambeesan SU
    BMC Genomics; 2022 Oct; 23(1):733. PubMed ID: 36309640
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits.
    Li S; Zhu B; Pirrello J; Xu C; Zhang B; Bouzayen M; Chen K; Grierson D
    New Phytol; 2020 Apr; 226(2):460-475. PubMed ID: 31814125
    [TBL] [Abstract][Full Text] [Related]  

  • 74. MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation.
    Gao C; Ju Z; Cao D; Zhai B; Qin G; Zhu H; Fu D; Luo Y; Zhu B
    Plant Biotechnol J; 2015 Apr; 13(3):370-82. PubMed ID: 25516062
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.
    Bastías A; López-Climent M; Valcárcel M; Rosello S; Gómez-Cadenas A; Casaretto JA
    Physiol Plant; 2011 Mar; 141(3):215-26. PubMed ID: 21128945
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ethylene receptors and related proteins in climacteric and non-climacteric fruits.
    Chen Y; Grimplet J; David K; Castellarin SD; Terol J; Wong DCJ; Luo Z; Schaffer R; Celton JM; Talon M; Gambetta GA; Chervin C
    Plant Sci; 2018 Nov; 276():63-72. PubMed ID: 30348329
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato.
    Yang Y; Wu Y; Pirrello J; Regad F; Bouzayen M; Deng W; Li Z
    J Exp Bot; 2010 Mar; 61(3):697-708. PubMed ID: 19903730
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits.
    Zhang M; Leng P; Zhang G; Li X
    J Plant Physiol; 2009 Aug; 166(12):1241-1252. PubMed ID: 19307046
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of plant hormones and their interplay in development and ripening of fleshy fruits.
    Kumar R; Khurana A; Sharma AK
    J Exp Bot; 2014 Aug; 65(16):4561-75. PubMed ID: 25028558
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phytohormones in fruit development and maturation.
    Fenn MA; Giovannoni JJ
    Plant J; 2021 Jan; 105(2):446-458. PubMed ID: 33274492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.