These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36010562)

  • 1. Integration of Human Protein Sequence and Protein-Protein Interaction Data by Graph Autoencoder to Identify Novel Protein-Abnormal Phenotype Associations.
    Liu Y; He R; Qu Y; Zhu Y; Li D; Ling X; Xia S; Li Z; Li D
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HPODNets: deep graph convolutional networks for predicting human protein-phenotype associations.
    Liu L; Mamitsuka H; Zhu S
    Bioinformatics; 2022 Jan; 38(3):799-808. PubMed ID: 34672333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HPOAnnotator: improving large-scale prediction of HPO annotations by low-rank approximation with HPO semantic similarities and multiple PPI networks.
    Gao J; Liu L; Yao S; Huang X; Mamitsuka H; Zhu S
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):187. PubMed ID: 31865916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Methods for Prediction of Human Protein-Phenotype Associations: A Review.
    Liu L; Zhu S
    Phenomics; 2021 Aug; 1(4):171-185. PubMed ID: 36939789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPOLabeler: improving prediction of human protein-phenotype associations by learning to rank.
    Liu L; Huang X; Mamitsuka H; Zhu S
    Bioinformatics; 2020 Aug; 36(14):4180-4188. PubMed ID: 32379868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.
    Notaro M; Schubach M; Robinson PN; Valentini G
    BMC Bioinformatics; 2017 Oct; 18(1):449. PubMed ID: 29025394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of protein sequence and protein-protein interaction data by hypergraph learning to identify novel protein complexes.
    Xia S; Li D; Deng X; Liu Z; Zhu H; Liu Y; Li D
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38851299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HPOFiller: identifying missing protein-phenotype associations by graph convolutional network.
    Liu L; Mamitsuka H; Zhu S
    Bioinformatics; 2021 Oct; 37(19):3328-3336. PubMed ID: 33822886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.
    Kahanda I; Funk C; Verspoor K; Ben-Hur A
    F1000Res; 2015; 4():259. PubMed ID: 26834980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HPO2GO: prediction of human phenotype ontology term associations for proteins using cross ontology annotation co-occurrences.
    Doğan T
    PeerJ; 2018; 6():e5298. PubMed ID: 30083448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Protein Functions Based on Heterogeneous Graph Attention Technique.
    Zhao Y; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    IEEE J Biomed Health Inform; 2024 Apr; 28(4):2408-2415. PubMed ID: 38319781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
    Le DH; Dao LTM
    J Mol Biol; 2018 Jul; 430(15):2219-2230. PubMed ID: 29758261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion.
    Kumar AA; Van Laer L; Alaerts M; Ardeshirdavani A; Moreau Y; Laukens K; Loeys B; Vandeweyer G
    Bioinformatics; 2018 Jul; 34(13):2254-2262. PubMed ID: 29452392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational algorithms to predict Gene Ontology annotations.
    Pinoli P; Chicco D; Masseroli M
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S4. PubMed ID: 25916950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.