These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36010619)

  • 1. Oxidative Stress Is Associated with Overgrowth in Drosophila
    Climent-Cantó P; Molnar C; Santabárbara-Ruiz P; Prieto C; Abril JF; Serras F; Gonzalez C
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 5'-3' exoribonuclease Pacman (Xrn1) regulates expression of the heat shock protein Hsp67Bc and the microRNA miR-277-3p in Drosophila wing imaginal discs.
    Jones CI; Grima DP; Waldron JA; Jones S; Parker HN; Newbury SF
    RNA Biol; 2013 Aug; 10(8):1345-55. PubMed ID: 23792537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs.
    Towler BP; Jones CI; Viegas SC; Apura P; Waldron JA; Smalley SK; Arraiano CM; Newbury SF
    RNA Biol; 2015; 12(7):728-41. PubMed ID: 25892215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis.
    Mumbauer S; Pascual J; Kolotuev I; Hamaratoglu F
    PLoS Genet; 2019 Sep; 15(9):e1008396. PubMed ID: 31568497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The endoplasmic reticulum unfolded protein response varies depending on the affected region of the tissue but independently from the source of stress.
    Perochon J; Grandon B; Roche D; Wintz C; Demay Y; Mignotte B; Szuplewski S; Gaumer S
    Cell Stress Chaperones; 2019 Jul; 24(4):817-824. PubMed ID: 31144193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves.
    Restrepo S; Basler K
    Nat Commun; 2016 Aug; 7():12450. PubMed ID: 27503836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activin receptor inhibition by Smad2 regulates Drosophila wing disc patterning through BMP-response elements.
    Peterson AJ; O'Connor MB
    Development; 2013 Feb; 140(3):649-59. PubMed ID: 23293296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live Imaging of Hippo Pathway Components in Drosophila Imaginal Discs.
    Xu J; Su T; Tokamov SA; Fehon RG
    Methods Mol Biol; 2019; 1893():53-59. PubMed ID: 30565124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two different sources of Perlecan cooperate for its function in the basement membrane of the Drosophila wing imaginal disc.
    Bonche R; Chessel A; Boisivon S; Smolen P; Thérond P; Pizette S
    Dev Dyn; 2021 Apr; 250(4):542-561. PubMed ID: 33269518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards long term cultivation of Drosophila wing imaginal discs in vitro.
    Handke B; Szabad J; Lidsky PV; Hafen E; Lehner CF
    PLoS One; 2014; 9(9):e107333. PubMed ID: 25203426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilp8 and its candidate receptor, Drl, are involved in the transdetermination of the Drosophila imaginal disc.
    Nemoto K; Masuko K; Fuse N; Kurata S
    Genes Cells; 2023 Dec; 28(12):857-867. PubMed ID: 37817293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potential regulates Hedgehog signalling in the Drosophila wing imaginal disc.
    Emmons-Bell M; Hariharan IK
    EMBO Rep; 2021 Apr; 22(4):e51861. PubMed ID: 33629503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc.
    Pérez-Garijo A; Shlevkov E; Morata G
    Development; 2009 Apr; 136(7):1169-77. PubMed ID: 19244279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Function of Lipin in the Wing Development of
    Duy Binh T; L A Pham T; Nishihara T; Thanh Men T; Kamei K
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective gap-junctional communication associated with imaginal disc overgrowth and degeneration caused by mutations of the dco gene in Drosophila.
    Jursnich VA; Fraser SE; Held LI; Ryerse J; Bryant PJ
    Dev Biol; 1990 Aug; 140(2):413-29. PubMed ID: 2373260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs.
    Mirth CK; Truman JW; Riddiford LM
    Development; 2009 Jul; 136(14):2345-53. PubMed ID: 19515698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the
    Brock AR; Seto M; Smith-Bolton RK
    Genetics; 2017 Jul; 206(3):1505-1520. PubMed ID: 28512185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcription factor optomotor-blind antagonizes Drosophila haltere growth by repressing decapentaplegic and hedgehog targets.
    Simon E; Guerrero I
    PLoS One; 2015; 10(3):e0121239. PubMed ID: 25793870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting Drosophila melanogaster Wing Imaginal Disc Eversion to Screen for New EMT Effectors.
    Golenkina S; Manhire-Heath R; Murray MJ
    Methods Mol Biol; 2021; 2179():115-134. PubMed ID: 32939717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster.
    Jory A; Estella C; Giorgianni MW; Slattery M; Laverty TR; Rubin GM; Mann RS
    Cell Rep; 2012 Oct; 2(4):1014-24. PubMed ID: 23063361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.