BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36010619)

  • 1. Oxidative Stress Is Associated with Overgrowth in Drosophila
    Climent-Cantó P; Molnar C; Santabárbara-Ruiz P; Prieto C; Abril JF; Serras F; Gonzalez C
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 5'-3' exoribonuclease Pacman (Xrn1) regulates expression of the heat shock protein Hsp67Bc and the microRNA miR-277-3p in Drosophila wing imaginal discs.
    Jones CI; Grima DP; Waldron JA; Jones S; Parker HN; Newbury SF
    RNA Biol; 2013 Aug; 10(8):1345-55. PubMed ID: 23792537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs.
    Towler BP; Jones CI; Viegas SC; Apura P; Waldron JA; Smalley SK; Arraiano CM; Newbury SF
    RNA Biol; 2015; 12(7):728-41. PubMed ID: 25892215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis.
    Mumbauer S; Pascual J; Kolotuev I; Hamaratoglu F
    PLoS Genet; 2019 Sep; 15(9):e1008396. PubMed ID: 31568497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The endoplasmic reticulum unfolded protein response varies depending on the affected region of the tissue but independently from the source of stress.
    Perochon J; Grandon B; Roche D; Wintz C; Demay Y; Mignotte B; Szuplewski S; Gaumer S
    Cell Stress Chaperones; 2019 Jul; 24(4):817-824. PubMed ID: 31144193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves.
    Restrepo S; Basler K
    Nat Commun; 2016 Aug; 7():12450. PubMed ID: 27503836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activin receptor inhibition by Smad2 regulates Drosophila wing disc patterning through BMP-response elements.
    Peterson AJ; O'Connor MB
    Development; 2013 Feb; 140(3):649-59. PubMed ID: 23293296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live Imaging of Hippo Pathway Components in Drosophila Imaginal Discs.
    Xu J; Su T; Tokamov SA; Fehon RG
    Methods Mol Biol; 2019; 1893():53-59. PubMed ID: 30565124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two different sources of Perlecan cooperate for its function in the basement membrane of the Drosophila wing imaginal disc.
    Bonche R; Chessel A; Boisivon S; Smolen P; Thérond P; Pizette S
    Dev Dyn; 2021 Apr; 250(4):542-561. PubMed ID: 33269518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards long term cultivation of Drosophila wing imaginal discs in vitro.
    Handke B; Szabad J; Lidsky PV; Hafen E; Lehner CF
    PLoS One; 2014; 9(9):e107333. PubMed ID: 25203426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilp8 and its candidate receptor, Drl, are involved in the transdetermination of the Drosophila imaginal disc.
    Nemoto K; Masuko K; Fuse N; Kurata S
    Genes Cells; 2023 Dec; 28(12):857-867. PubMed ID: 37817293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potential regulates Hedgehog signalling in the Drosophila wing imaginal disc.
    Emmons-Bell M; Hariharan IK
    EMBO Rep; 2021 Apr; 22(4):e51861. PubMed ID: 33629503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc.
    Pérez-Garijo A; Shlevkov E; Morata G
    Development; 2009 Apr; 136(7):1169-77. PubMed ID: 19244279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Function of Lipin in the Wing Development of
    Duy Binh T; L A Pham T; Nishihara T; Thanh Men T; Kamei K
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective gap-junctional communication associated with imaginal disc overgrowth and degeneration caused by mutations of the dco gene in Drosophila.
    Jursnich VA; Fraser SE; Held LI; Ryerse J; Bryant PJ
    Dev Biol; 1990 Aug; 140(2):413-29. PubMed ID: 2373260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs.
    Mirth CK; Truman JW; Riddiford LM
    Development; 2009 Jul; 136(14):2345-53. PubMed ID: 19515698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the
    Brock AR; Seto M; Smith-Bolton RK
    Genetics; 2017 Jul; 206(3):1505-1520. PubMed ID: 28512185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcription factor optomotor-blind antagonizes Drosophila haltere growth by repressing decapentaplegic and hedgehog targets.
    Simon E; Guerrero I
    PLoS One; 2015; 10(3):e0121239. PubMed ID: 25793870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting Drosophila melanogaster Wing Imaginal Disc Eversion to Screen for New EMT Effectors.
    Golenkina S; Manhire-Heath R; Murray MJ
    Methods Mol Biol; 2021; 2179():115-134. PubMed ID: 32939717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster.
    Jory A; Estella C; Giorgianni MW; Slattery M; Laverty TR; Rubin GM; Mann RS
    Cell Rep; 2012 Oct; 2(4):1014-24. PubMed ID: 23063361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.