BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3601062)

  • 1. Contribution of glia and neurons to the surface-negative potentials of the cerebral cortex during its electrical stimulation.
    Roitbak AI; Fanardjian VV; Melkonyan DS; Melkonyan AA
    Neuroscience; 1987 Mar; 20(3):1057-67. PubMed ID: 3601062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Glial origin of negative shifts in the surface potential of the brain upon tetanic stimulation: microelectrode study and mathematical analysis].
    Roĭtbak AI; Fanardzhian VV; Melkonian DS; Melkonian AA
    Neirofiziologiia; 1983; 15(5):509-16. PubMed ID: 6316176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal and glial activity during spreading depression in cerebral cortex of cat.
    Sugaya E; Takato M; Noda Y
    J Neurophysiol; 1975 Jul; 38(4):822-41. PubMed ID: 1159468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Glial origin of the slow negative potential of the direct cortical response: microelectrode study and mathematical analysis].
    Roĭtbak AI; Fanardzhian VV; Melkonian DS; Melkonian AA
    Neirofiziologiia; 1982; 14(1):76-84. PubMed ID: 6278337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Negative surface potential shift and neuronal and glial cell response to tetanic stimulation of the surface of the cortex].
    Labakhua TSh; Bekaia GL; Okudzhava VM
    Neirofiziologiia; 1982; 14(3):248-53. PubMed ID: 7110436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depolarization of cortical glial cells in response to electrical stimulation of the cortical surface.
    Roitbak AI; Fanardjian VV
    Neuroscience; 1981; 6(12):2529-37. PubMed ID: 7322348
    [No Abstract]   [Full Text] [Related]  

  • 7. [Prolonged negative potentials of the surface of the sensomotor cortex of the cat and responses of neural and glial cells].
    Okudzhava VM; Bekaia GL; Labakhua TSh; Kokaia MG
    Fiziol Zh SSSR Im I M Sechenova; 1984 Aug; 70(8):1132-41. PubMed ID: 6094266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in the extracellular potassium concentration and the slow negative potential in the cerebral cortex].
    Roĭtbak AI; Makhek I; Pavlik V; Bobrov AV; Ocherashvili IV
    Neirofiziologiia; 1980; 12(5):459-63. PubMed ID: 7422035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The time course of evoked depolarization of cortical glial cells.
    Grossman RG; Whiteside L; Hampton TL
    Brain Res; 1969 Jul; 14(2):401-15. PubMed ID: 5794915
    [No Abstract]   [Full Text] [Related]  

  • 10. Cholinergic action on cortical glial cells in vivo.
    Seigneur J; Kroeger D; Nita DA; Amzica F
    Cereb Cortex; 2006 May; 16(5):655-68. PubMed ID: 16093563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution to steady potential shifts of slow depolarization in cells presumed to be glia.
    Castellucci VF; Goldring S
    Electroencephalogr Clin Neurophysiol; 1970 Feb; 28(2):109-18. PubMed ID: 4189522
    [No Abstract]   [Full Text] [Related]  

  • 12. Slow surface negative potentials of the cortex and cortical inhibition.
    Roitbak AI
    Prog Brain Res; 1968; 22():123-37. PubMed ID: 5651161
    [No Abstract]   [Full Text] [Related]  

  • 13. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex.
    Amzica F; Steriade M
    J Neurosci; 2000 Sep; 20(17):6648-65. PubMed ID: 10964970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: in vivo electrophysiology.
    Sawyer SF; Young SJ; Groves PM; Tepper JM
    Neuroscience; 1994 Dec; 63(3):711-24. PubMed ID: 7898672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures.
    Amzica F; Neckelmann D
    J Neurophysiol; 1999 Nov; 82(5):2731-46. PubMed ID: 10561441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depolarization of cortical glial cells during electrocortical activity.
    Grossman RG; Hampton T
    Brain Res; 1968 Nov; 11(2):316-24. PubMed ID: 5701199
    [No Abstract]   [Full Text] [Related]  

  • 17. Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo.
    Lang EJ; Paré D
    J Neurophysiol; 1997 Jan; 77(1):353-63. PubMed ID: 9120576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of a prevalent laminar distribution of IPSPs in association cortical neurons of cat.
    Contreras D; Dürmüller N; Steriade M
    J Neurophysiol; 1997 Nov; 78(5):2742-53. PubMed ID: 9356423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I; Heinemann U; Lux HD
    Glia; 1989; 2(1):25-44. PubMed ID: 2523337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Slow electrical potentials arising after the initial response in the somatosensory cortex of the brain of the cat upon stimulation of the ventroposterolateral nucleus of the thalamus].
    Ocherashvili IV
    Neirofiziologiia; 1985; 17(4):435-41. PubMed ID: 4047239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.