These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 3601072)

  • 1. Logic operations are properties of computer-simulated interactions between excitable dendritic spines.
    Shepherd GM; Brayton RK
    Neuroscience; 1987 Apr; 21(1):151-65. PubMed ID: 3601072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines.
    Shepherd GM; Brayton RK; Miller JP; Segev I; Rinzel J; Rall W
    Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2192-5. PubMed ID: 3856892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The integrative properties of spiny distal dendrites.
    Jaslove SW
    Neuroscience; 1992; 47(3):495-519. PubMed ID: 1584406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic integration gradients in single cortical pyramidal cell dendrites.
    Branco T; Häusser M
    Neuron; 2011 Mar; 69(5):885-92. PubMed ID: 21382549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites.
    Popovic MA; Gao X; Carnevale NT; Zecevic D
    Cereb Cortex; 2014 Feb; 24(2):385-95. PubMed ID: 23054810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparisons between Active Properties of Distal Dendritic Branches and Spines: Implications for Neuronal Computations.
    Shepherd GM; Woolf TB; Carnevale NT
    J Cogn Neurosci; 1989; 1(3):273-86. PubMed ID: 23968510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells.
    Megías M; Emri Z; Freund TF; Gulyás AI
    Neuroscience; 2001; 102(3):527-40. PubMed ID: 11226691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of dendritic spines in action potential backpropagation: a numerical simulation study.
    Tsay D; Yuste R
    J Neurophysiol; 2002 Nov; 88(5):2834-45. PubMed ID: 12424316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic spines and distributed circuits.
    Yuste R
    Neuron; 2011 Sep; 71(5):772-81. PubMed ID: 21903072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic integration in an excitable dendritic tree.
    Mel BW
    J Neurophysiol; 1993 Sep; 70(3):1086-101. PubMed ID: 8229160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of an excitable dendritic spine.
    Segev I; Rall W
    J Neurophysiol; 1988 Aug; 60(2):499-523. PubMed ID: 2459320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending cable theory to heterogeneous dendrites.
    Meunier C; Lamotte d'Incamps B
    Neural Comput; 2008 Jul; 20(7):1732-75. PubMed ID: 18254702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on electrical properties of dendritic spines.
    Kawato M; Tsukahara N
    J Theor Biol; 1983 Aug; 103(4):507-22. PubMed ID: 6632925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of dendritic spikes mediated by excitable spines: a continuum theory.
    Baer SM; Rinzel J
    J Neurophysiol; 1991 Apr; 65(4):874-90. PubMed ID: 2051208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of asymmetric attenuation of single and paired dendritic inputs on summation of synaptic potentials and initiation of action potentials.
    Fortier PA; Bray C
    Neuroscience; 2013 Apr; 236():195-209. PubMed ID: 23370323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Green's function formalism as a bridge between single- and multi-compartmental modeling.
    Wybo WA; Stiefel KM; Torben-Nielsen B
    Biol Cybern; 2013 Dec; 107(6):685-94. PubMed ID: 24037222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branching of active dendritic spines as a mechanism for controlling synaptic efficacy.
    Rusakov DA; Stewart MG; Korogod SM
    Neuroscience; 1996 Nov; 75(1):315-23. PubMed ID: 8923544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles governing the operation of synaptic inhibition in dendrites.
    Gidon A; Segev I
    Neuron; 2012 Jul; 75(2):330-41. PubMed ID: 22841317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurones: an analysis of dendritic remote inhibition.
    Diamond J; Huxley AF
    J Physiol; 1968 Feb; 194(3):669-723. PubMed ID: 5636994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity.
    Hiratani N; Fukai T
    J Neurosci; 2017 Dec; 37(50):12106-12122. PubMed ID: 29089443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.