These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36010738)

  • 21. Performance of an irreversible quantum Carnot engine with spin 12.
    Wu F; Chen L; Wu S; Sun F; Wu C
    J Chem Phys; 2006 Jun; 124(21):214702. PubMed ID: 16774426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Power and Efficiency Optimization for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle.
    Chen L; Feng H; Ge Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecological Function Analysis and Optimization of a Recompression S-CO
    Jin Q; Xia S; Xie T
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit.
    Meng Z; Chen L; Wu F
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-Objective Constructal Design for Quadrilateral Heat Generation Body with Vein-Shaped High Thermal Conductivity Channel.
    Zhu H; Chen L; Ge Y; Shi S; Feng H
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Performance Analysis of a Simplified Curzon-Ahlborn Engine.
    Páez-Hernández RT; Chimal-Eguía JC; Ladino-Luna D; Velázquez-Arcos JM
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study.
    Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F
    Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms.
    Ye Z; Hu Y; He J; Wang J
    Sci Rep; 2017 Jul; 7(1):6289. PubMed ID: 28740216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using a Partially Evaporating Cycle to Improve the Volume Ratio Problem of the Trilateral Flash Cycle for Low-Grade Heat Recovery.
    Lai KY; Lee YT; Lai TH; Liu YH
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Research on high efficiency and high dynamic optimal matching of the electro-hydraulic servo pump control system based on NSGA-II.
    Yang M; Yan G; Zhang Y; Zhang T; Ai C
    Heliyon; 2023 Mar; 9(3):e13805. PubMed ID: 36873508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.
    Izumida Y; Okuda K
    Phys Rev Lett; 2014 May; 112(18):180603. PubMed ID: 24856684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Objective Optimization of the Basic and Regenerative ORC Integrated with Working Fluid Selection.
    Zhou Y; Ruan J; Hong G; Miao Z
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pareto multi-objective optimization of tandem cold rolling settings for reductions and inter stand tensions using NSGA-II.
    Babajamali Z; Khabaz MK; Aghadavoudi F; Farhatnia F; Eftekhari SA; Toghraie D
    ISA Trans; 2022 Nov; 130():399-408. PubMed ID: 35459552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linear Irreversible Thermodynamics: A Glance at Thermoelectricity and the Biological Scaling Laws.
    Chimal-Eguia JC; Páez-Hernández RT; Pacheco-Paez JC; Ladino-Luna D
    Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Optimization of a Dual Pressure Goswami Cycle for Low Grade Thermal Sources.
    Guzmán G; De Los Reyes L; Noriega E; Ramírez H; Bula A; Fontalvo A
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic Performance of a Brayton Pumped Heat Energy Storage System: Influence of Internal and External Irreversibilities.
    Pérez-Gallego D; Gonzalez-Ayala J; Calvo Hernández A; Medina A
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization, Stability, and Entropy in Endoreversible Heat Engines.
    Gonzalez-Ayala J; Mateos Roco JM; Medina A; Calvo Hernández A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic Optimization of Ammonia Decomposition Solar Heat Absorption System Based on Membrane Reactor.
    Xie T; Xia S; Jin Q
    Membranes (Basel); 2022 Jun; 12(6):. PubMed ID: 35736334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.