These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36010760)

  • 41. Development of an algorithm for an EEG-based driver fatigue countermeasure.
    Lal SK; Craig A; Boord P; Kirkup L; Nguyen H
    J Safety Res; 2003; 34(3):321-8. PubMed ID: 12963079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Increase in regularity and decrease in variability seen in electroencephalography (EEG) signals from alert to fatigue during a driving simulated task.
    Tran Y; Wijesuryia N; Thuraisingham RA; Craig A; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1096-9. PubMed ID: 19162854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Real-Time ECG-Based Detection of Fatigue Driving Using Sample Entropy.
    Wang F; Wang H; Fu R
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Novel Fatigue Driving State Recognition and Warning Method Based on EEG and EOG Signals.
    Liu L; Ji Y; Gao Y; Ping Z; Kuang L; Li T; Xu W
    J Healthc Eng; 2021; 2021():7799793. PubMed ID: 34853672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of a seat-integrated mobilization system during passive driver fatigue.
    Schneider L; Frings K; Rothe S; Schrauf M; Jaitner T
    Accid Anal Prev; 2021 Feb; 150():105883. PubMed ID: 33285447
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Research on mental fatigue information transmission integration mechanism based on theta-gamma phase amplitude coupling].
    Yang S; Ji Y; Li R; Wang L; Xu G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Oct; 35(5):672-678. PubMed ID: 30370704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation.
    Gao Z; Wang X; Yang Y; Mu C; Cai Q; Dang W; Zuo S
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2755-2763. PubMed ID: 30640634
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Application of HHT to driving fatigue in EEG analysis].
    Nan J; Ai L; Shen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Aug; 28(4):653-7. PubMed ID: 21936356
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vigilance detection based on sparse representation of EEG.
    Yu H; Lu H; Ouyang T; Liu H; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2439-42. PubMed ID: 21095698
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying changes in EEG information transfer during drowsy driving by transfer entropy.
    Huang CS; Pal NR; Chuang CH; Lin CT
    Front Hum Neurosci; 2015; 9():570. PubMed ID: 26557069
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cross-Subject Zero Calibration Driver's Drowsiness Detection: Exploring Spatiotemporal Image Encoding of EEG Signals for Convolutional Neural Network Classification.
    Paulo JR; Pires G; Nunes UJ
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():905-915. PubMed ID: 33979288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection.
    Zeng H; Zhang J; Zakaria W; Babiloni F; Gianluca B; Li X; Kong W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison between human awake, meditation and drowsiness EEG activities based on directed transfer function and MVDR coherence methods.
    Dissanayaka C; Ben-Simon E; Gruberger M; Maron-Katz A; Sharon H; Hendler T; Cvetkovic D
    Med Biol Eng Comput; 2015 Jul; 53(7):599-607. PubMed ID: 25773370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation.
    Zhao Y; Dai G; Borghini G; Zhang J; Li X; Zhang Z; Aricò P; Di Flumeri G; Babiloni F; Zeng H
    Front Hum Neurosci; 2021; 15():706270. PubMed ID: 34658814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating Pro- and Re-Active Driving Behavior by Means of the EEG.
    Wascher E; Arnau S; Gutberlet I; Karthaus M; Getzmann S
    Front Hum Neurosci; 2018; 12():205. PubMed ID: 29910715
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of Mental Fatigue on
    Li G; Luo Y; Zhang Z; Xu Y; Jiao W; Jiang Y; Huang S; Wang C
    Neural Plast; 2019; 2019():1716074. PubMed ID: 31885535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Effects of the Driver's Mental State and Passenger Compartment Conditions on Driving Performance and Driving Stress.
    Magaña VC; Scherz WD; Seepold R; Madrid NM; Pañeda XG; Garcia R
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32942684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.
    Liu YT; Lin YY; Wu SL; Chuang CH; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):347-60. PubMed ID: 26595929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction and Application of Functional Brain Network Based on Entropy.
    Zhang L; Qiu T; Lin Z; Zou S; Bai X
    Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33287002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mid-Task Break Improves Global Integration of Functional Connectivity in Lower Alpha Band.
    Li J; Lim J; Chen Y; Wong K; Thakor N; Bezerianos A; Sun Y
    Front Hum Neurosci; 2016; 10():304. PubMed ID: 27378894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.