These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36010787)
21. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants. Supekar SD; Skerlos SJ Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409 [TBL] [Abstract][Full Text] [Related]
22. Decarbonizing the Coal-Fired Power Sector in China via Carbon Capture, Geological Utilization, and Storage Technology. Wei N; Jiao Z; Ellett K; Ku AY; Liu S; Middleton R; Li X Environ Sci Technol; 2021 Oct; 55(19):13164-13173. PubMed ID: 34549588 [TBL] [Abstract][Full Text] [Related]
23. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage. Zhai H; Ou Y; Rubin ES Environ Sci Technol; 2015 Jul; 49(13):7571-9. PubMed ID: 26023722 [TBL] [Abstract][Full Text] [Related]
24. Structural and Parametric Optimization of S-CO Rogalev N; Rogalev A; Kindra V; Komarov I; Zlyvko O Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441219 [TBL] [Abstract][Full Text] [Related]
25. Economic Feasibility Study of a Carbon Capture and Storage (CCS) Integration Project in an Oil-Driven Economy: The Case of the State of Kuwait. Naseeb A; Ramadan A; Al-Salem SM Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682073 [TBL] [Abstract][Full Text] [Related]
26. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey. Ağralı S; Üçtuğ FG; Türkmen BA J Environ Manage; 2018 Jun; 215():305-315. PubMed ID: 29574208 [TBL] [Abstract][Full Text] [Related]
27. Joint Modeling and Operational Optimization of a Reverse Osmosis-Mechanical Vapor Recompression System for Coal-Fired Power Plant Wastewater. Xie F; Zhao Y; Jiang A; Zhao R; Li C; Wang J Membranes (Basel); 2024 Mar; 14(3):. PubMed ID: 38535284 [TBL] [Abstract][Full Text] [Related]
28. Comprehensive Evaluation of Coal-Fired Power Units Using Grey Relational Analysis and a Hybrid Entropy-Based Weighting Method. Wu D; Wang N; Yang Z; Li C; Yang Y Entropy (Basel); 2018 Mar; 20(4):. PubMed ID: 33265306 [TBL] [Abstract][Full Text] [Related]
29. Exergy-Based Analysis and Optimization of an Integrated Solar Combined-Cycle Power Plant. Elmorsy L; Morosuk T; Tsatsaronis G Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286428 [TBL] [Abstract][Full Text] [Related]
30. Air quality and health benefits from potential coal power plant closures in Texas. Strasert B; Teh SC; Cohan DS J Air Waste Manag Assoc; 2019 Mar; 69(3):333-350. PubMed ID: 30339492 [TBL] [Abstract][Full Text] [Related]
31. Comparison of the most likely low-emission electricity production systems in Estonia. Baird ZS; Neshumayev D; Järvik O; Powell KM PLoS One; 2021; 16(12):e0261780. PubMed ID: 34968401 [TBL] [Abstract][Full Text] [Related]
32. Integrating palm oil biomass waste utilization in coal-fired power plants for meeting near-term emission targets. Mohd Idris MN; Hashim H J Environ Manage; 2021 Oct; 296():113118. PubMed ID: 34216903 [TBL] [Abstract][Full Text] [Related]
33. Implications of Generation Efficiencies and Supply Chain Leaks for the Life Cycle Greenhouse Gas Emissions of Natural Gas-Fired Electricity in the United States. Tavakkoli S; Feng L; Miller SM; Jordaan SM Environ Sci Technol; 2022 Feb; 56(4):2540-2550. PubMed ID: 35107984 [TBL] [Abstract][Full Text] [Related]
34. Water footprint comparison of a naphtha-fired combined cycle power plant and a coal-fired steam power plant. Arpit S; Das PK; Dash SK Environ Monit Assess; 2022 May; 194(6):404. PubMed ID: 35513507 [TBL] [Abstract][Full Text] [Related]
35. The oxycoal process with cryogenic oxygen supply. Kather A; Scheffknecht G Naturwissenschaften; 2009 Sep; 96(9):993-1010. PubMed ID: 19495717 [TBL] [Abstract][Full Text] [Related]
36. Artificial Intelligence Modeling-Based Optimization of an Industrial-Scale Steam Turbine for Moving toward Net-Zero in the Energy Sector. Ashraf WM; Uddin GM; Tariq R; Ahmed A; Farhan M; Nazeer MA; Hassan RU; Naeem A; Jamil H; Krzywanski J; Sosnowski M; Dua V ACS Omega; 2023 Jun; 8(24):21709-21725. PubMed ID: 37360426 [TBL] [Abstract][Full Text] [Related]
37. Effectiveness of clean development policies on coal-fired power generation: an empirical study in China. Zhang M; Lv T; Zhao Y; Pan J Environ Sci Pollut Res Int; 2020 May; 27(13):14654-14667. PubMed ID: 32052324 [TBL] [Abstract][Full Text] [Related]
38. Development of multimode gas-fired combined-cycle chemical-looping combustion-based power plant layouts. Jayadevappa BR Environ Sci Pollut Res Int; 2022 Aug; 29(36):54967-54987. PubMed ID: 35307797 [TBL] [Abstract][Full Text] [Related]
39. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation. Peer RA; Garrison JB; Timms CP; Sanders KT Environ Sci Technol; 2016 Apr; 50(8):4537-45. PubMed ID: 26967826 [TBL] [Abstract][Full Text] [Related]